Supporting Information

A Three-Dimensional Mn-Based MOF as a High-Performance

Supercapacitor Electrode

Hongren Rong^a, Peng Song^a, Gexiang Gao^a, Qingyan Jiang^a, Xiaojuan Chen^a, Lixin Su^a, Wen-Long Liu^{b*}, Qi Liu^{a*}

^aJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced

Catalysis and Green Manufacturing Collaborative Innovation Center and School of

Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R.

China.

^bSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou

Jiangsu 225009, P. R. China

1. Scheme, Figures and Tables

Scheme S1 Synthetic route of the ligands H_2L^1 , H_2L^2 and H_2L^3

Scheme S2. Synthetic route of BGPD

Mn-BGPD			
Mn(1)-O(2)	2.1737(19)	Mn(1)-O(1)C	2.1991(19)
Mn(1)-O(2)A	2.1738(19)	Mn(1)-O(5)A	2.1825(19)
Mn(1)-O(5)	2.1826(19)	Mn(1)-O(1)B	2.1991(19)
O(2)-Mn(1)-O(2)A	180.0	O(2)-Mn(1)-O(1)C	92.05(7)
O(2)-Mn(1)-O(1)B	87.95(7)	O(2)A-Mn(1)-O(1)C	87.95(7)
O(2)A-Mn(1)-O(1)B	92.05(7)	O(5)A-Mn(1)-O(1)B	88.57(8)
O(2)-Mn(1)-O(5)A	89.54(7)	O(5)A-Mn(1)-O(1)C	91.43(8)
O(2)A-Mn(1)-O(5)A	90.46(7)	O(5)-Mn(1)-O(1)C	88.57(8)
O(2)-Mn(1)-O(5)	90.46(7)	O(1)B-Mn(1)-O(1)C	180.0
O(2)A-Mn(1)-O(5)	89.54(7)	O(5)A-Mn(1)-O(5)	180.0
O(5)-Mn(1)-O(1)B	91.43(8)		

Table S1 The main bond length (Å) and bond angle (°) of Mn-BGPD

Symmetry codes: A -x+1,-y+1,-z+1; B -x+1,y-1/2,-z+3/2; C x,-y+3/2,z-1/2

Table S2 The bond length (Å) and bond angle (°) of the hydrogen bond of Mn-BGPD

D–H···A	D–H	Н…А	D····A	∠D–H…A
O(5)-H(5A)O(1)#1	0.96	1.90	2.7150	141.00
O(5)-H(5B)O(3)#8	0.96	2.02	2.8230	140.00
C(2)-H(2A)O(5)#6	0.97	2.62	3.553	161.00
C(2)-H(2B)O(2)#7	0.97	2.44	3.1349	128.00

Symmetry codes:#1 -x+1,-y+1,-z+1; #2 -x+1,y-1/2,-z+3/2; #3 x,-y+3/2,z-1/2; #4 -x,-y+1,-z+1; #5 -x+1,y+1/2,-z+3/2; #6 x,y,z+1; #7 x,-y+3/2,z+1/2; #8 x,-y+1/2,z-1/2

Table S3 Performance comparison of the reported MOFs-based electrodes

Electrodes	Electrolyte	Voltage (V)	specific capacitance (F g ⁻¹)	Ref.
Co-MOF	1 M KOH	0-0.47	446.8 F g ⁻¹ at 1.2 A g ⁻¹	[27]
Ni-MOF	2 M KOH	0-0.4	726 F g ⁻¹ at 1 A g ⁻¹	[31]
SC-1	6 M KOH	0-0.55	705 F g^{-1} at 1 A g^{-1}	[36]
MOF-3	2 M KOH	0-0.38	465 F g ⁻¹ at 1 A g ⁻¹	[37]
Co-MOF	1 M KOH	0-0.6	148 F g ⁻¹ at 2 A g ⁻¹	[38]
SNNU-52	2 M KOH	0-0.5	523 F g ⁻¹ at 1 A g ⁻¹	[39]
Cu@BTC-120	3 М КОН	0-0.5	228 F g ⁻¹ at 1.5 A g ⁻¹	[41]
Ni-CP	7 М КОН	0-0.4	802 F g^{-1} at 3 A g^{-1}	[46]
Mn-BGPD	1 M KOH	0-0.57	832.6 F g ⁻¹ at 1 A g ⁻¹	This work

Figure S1 Specific capacitances of the Mn-BGPD electrode at different current densities

Figure S2. FTIR spectra of the Mn–BGPD (a) pristine electrode containing Mn–BGPD, acetylene black, and PTFE. (b) after 1000 cycles.

Figure S3. XRD patterns of the Mn–BGPD (a) pristine electrode containing Mn–BGPD, acetylene black, and PTFE. (b) after 1000 cycles.

Figure S4. SEM images of the Mn–BGPD (a) pristine electrode containing Mn–BGPD, acetylene black, and PTFE. (b) after 1000 cycles.

Figure S 5 (a-c) CV curves with capacity separation at different scan rates. (d) The contribution ratios of the diffusion-controlled capacities and capacitive capacities at different scan rates.

Figure S6. (a) CV curves of the rGO electrode at different scanning rates. (b) The charge-discharge curves of the rGO electrode at the current density of 2A g⁻¹.

Figure S7. Cyclic performance of the Mn-BGPD//rGO ASC and acetylene black

