Supporting Information

High-valence chromium accelerated interface electron transfer for water oxidation

Shaoxi Kong,^{a†} Mengfei Lu,^{a,b†} Shicheng Yan,^{a*} and Zhigang Zou^{a,b}

^aCollaborative Innovation Center of Advanced Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu 210093, P. R. China.

^bNational Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China.

* Corresponding Author E-mail: yscfei@nju.edu.cn (S. C. Yan)

[†] These authors contributed equally to this work.

Fig S1. (a) XRD patterns of $Ni_3Fe_{0.5}Cr_{0.5}$ -NH₃, Ni_3Fe -H₂ and Ni_3Fe N-NH₃. (b) XRD pattern of Ni_3Cr -NH₃.

Fig S2. SEM image of Ni₃Fe.

Fig S3. XPS spectra. (a) Survey spectra, (b) Ni 2p, (c) Fe 2p, (d) Cr 2p, (e) O 1s and (f) N 1s for $Ni_3Fe_{0.5}Cr_{0.5}$ -NH₃ and $Ni_3Fe_{0.5}Cr_{0.5}$ -H₂.

Fig S4. CV curves with different scan rates in non-faradic region. (a) $Ni_3Fe_{0.5}Cr_{0.5}-NH_3$, (b) $Ni_3Fe_{0.5}Cr_{0.5}-H_2$, (c) Ni_3Fe at various scan rates (20, 40, 60, 80 and 100 mV/s) in 1.0 M KOH for OER. (d) Plots of capacitive current density versus scan rate. The slopes represent C_{dl} . (e) LSV curves normalized by ECSA of the as-prepared samples. The ECSA was calculated by double-layer capacitance.

Fig S5. Raman spectrum of $Ni_3Fe_{0.5}Cr_{0.5}$ -NH₃ after OER.

Fig S6. UV-vis spectroscopy of the electrolyte after the chronoamperometry measurement.

Fig S7.OER polarization curves of $Ni_3Fe_{1-x}Cr_x-NH_3$ (x=0.25, 0.5, 0.75) with 90 % iR correction at a scan rate of 10 mV/s in 1.0 M KOH.

Fig S8. OER polarization curves of $Ni_3Fe_{0.5}Cr_{0.5}$ – NH_3 with 90 % iR correction at a scan rate of 10 mV/s in 1.0 M KOH and 1.0 M KOH with Cr^{6+} .

Fig S9. The faradaic efficiency of $Ni_3Fe_{0.5}Cr_{0.5}$ - NH_3 .

Samples	The content of metal ions (mmol/L)			Mole ratio		
	Ni	Fe	Cr	Ni	Fe	Cr
Ni ₃ Fe _{0.5} Cr _{0.5}	1.20	0.21	0.18	3.08	0.54	0.46
After 10h OER	0.2835	0.0500	0.0047	3.06	0.54	0.051
After 20h OER	0.1894	0.0340	0.0033	2.99	0.54	0.05

Table S1. Compositions of the samples determined by ICP-AES.

 0-10h OER
 10-20h OER

 Concentration of Cr(μg/L)
 237.66
 ND

 Concentration of Fe(μg/L)
 ND
 ND

 Concentration of Ni(μg/L)
 ND
 ND

Table S2. Concentrations of Cr Fe and Ni for $Ni_3Fe_{0.5}Cr_{0.5}$ -NH₃ after operating in different electrolytes, as shown in **Fig 5b**, determined by the atomic absorption spectrum.

Catalyst	Electrolyte	Substrates	Method	j (mA cm ⁻²)	η (mV)	Reference
Ni ₃ Fe _{0.5} Cr _{0.5} -NH ₃	1.0 M KOH	Carbon paper	Dropping	25	209	This work
				50	232	
NiFeCr-LDH	1.0 M KOH	Ni foam	Dropping	100	242	[1]
NiFeCr-LDH/MoS ₂	1.0 M KOH	glassy carbon	Dropping	10	270	[2]
NiFeCr LDH	1.0 M KOH	Carbon paper	In situ growth	25	225	[3]
h-NiFeCr	1.0 M KOH	Ni foam	Electrodeposition	10	220	[4]
NiFeCr	1.0 M KOH	Ni foam	Electrodeposition	100	260	[5]
Cr ₁ /FeNi-LDH	1.0 M KOH	stainless steel	Electrodeposition	10	202	[6]
CS-NiFeCr	1.0 M KOH	Copper foil	Electrodeposition	10	200	[7]
				50	230	

References

- Wang, M. H.; Lou, Z. X.; Wu, X.; Liu, Y.; Zhao, J. Y.; Sun, K. Z.; Li, W. X.; Chen, J.; Yuan, H. Y.; Zhu, M.; Dai, S.; Liu, P. F.; Yang, H. G., Small 2022, 18, e2200303.
- 2. Chen, S.; Yu, C.; Cao, Z.; Huang, X.; Wang, S.; Zhong, H., Int. J. Hydr. Energy 2021, 46, 7037-7046.
- 3. Yang, Y.; Dang, L.; Shearer, M. J.; Sheng, H.; Li, W.; Chen, J.; Xiao, P.; Zhang, Y.; Hamers, R. J.; Jin, S., *Adv. Energy Mater* **2018**, *8*, 1703189.
- 4. Bo, X.; Li, Y.; Hocking, R. K.; Zhao, C., ACS Appl Mater Interfaces 2017, 9, 41239-41245.
- 5. Bo, X.; Hocking, R. K.; Zhou, S.; Li, Y.; Chen, X.; Zhuang, J.; Du, Y.; Zhao, C., *Energy Environ. Sci* 2020, 13, 4225-4237.
- 6. Xie, X.; Cao, C.; Wei, W.; Zhou, S.; Wu, X. T.; Zhu, Q. L., Nanoscale 2020, 12, 5817-5823.
- Fan, L.; Zhang, P.; Zhang, B.; Daniel, Q.; Timmer, B. J. J.; Zhang, F.; Sun, L. ACS Energy Lett 2018, 3, 2865-2874.