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Fig. S1 PXRD patterns of NiFe-MOF-n/NF (x = 3, 4, 5, 6, 7) and simulated MIL-101(Cr).

Fig. S2 PXRD patterns of Ni-MOF/NF, NiFe-MOF-NF, simulated Ni(BDC) and simulated 
Fe(BDC)(DMF).

Note: The XRD pattern of Ni-MOF/NF should be assigned to Ni(BDC).1 Notably, the 
diffraction peaks of Ni-MOF/NF were shifted to lower angles compared to the 
simulated pattern for Ni(BDC) possibly due to the influence of solvent.2 As shown in 
Fig. S2, the diffraction peaks of obtained NiFe-MOF/NF matched well with 
Fe(BDC)(DMF) when iron and nickel salt were added during hydrothermal process.



Fig. S3 SEM images of (a, b) Ni-MOF/NF and (c, d) NiFe-MOF-NF.

Fig. S4 SEM images of (a) NiFe-MOF-3/NF, (b) NiFe-MOF-4/NF, (c) NiFe-MOF-5/NF, (d) 
NiFe-MOF-6/NF and (e) NiFe-MOF-7/NF.



Fig. S5 SEM-EDX spectra of NiFe-MOF-2/NF.

Fig. S6 FT-IR spectrums of NiFe-MOF-2/NF and 1,4-H2BDC.



Fig. S7 Raman spectra of NiFe-MOF-2/NF.

Fig. S8 The comparison of the overpotentials to reach the current densities of 10 and 
100 mA cm-2.



Fig. S9 The plots of ΔJ versus scan rates for NiFe-MOF-n/NF (n= 1-7).

Note: The ECSA of NiFe-MOF-n/NF (n = 1-7) were determined by CV at varying rates 
from 40 to 140 mV s-1. The ECSA test of the NiFe-MOF-n/NF (n= 2, 3, 4, 5) show 
similar values, as shown in Fig. S9, indicating that the accessible catalytically surface 
area, and thus active sites in the four samples are close to each other.

Fig. S10 ECSA-normalized polarization curves for NiFe-MOF-n/NF (n= 1-7).



Fig. S11 (a) The LSV curves of NiFe-MOF-2/NF, NiFe-MOF-2 powder@NF, NiFe-MOF-
2 powder@CC, NiFe-MOF-2 powder@CFP, NF, CC and CFP, (b) the corresponding 

Tafel slopes.

Fig. S12 CV curves of (a) NiFe-MOF-2/NF, (b) NiFe-MOF-2 powder@NF, (c) NiFe-
MOF-2 powder@CC and (d) NiFe-MOF-2 powder@CFP at different scan rates in the 

potential range of -0.05–0.05 V vs Hg/HgO.



Fig. S13 Charging current density differences plotted against scan rates of NiFe-MOF-
2/NF, NiFe-MOF-2 powder@NF, NiFe-MOF-2 powder@CC and NiFe-MOF-2 

powder@CFP at 0.92 V vs. RHE.

Note: To explore the significant OER activity difference between NiFe-MOF-2/NF, 
NiFe-MOF-2 powder@NF, NiFe-MOF-2 powder@CC and NiFe-MOF-2 powder@CFP, 
ECSA were evaluated by Cdl through CV measurement (Fig. S12 and S13). Although 
both NiFe-MOF-2 powder@CC and NiFe-MOF-2 powder@CFP have larger Cdl value 
(3.25 mF cm-2 and 2.39 mF cm-2) compared with NiFe-MOF-2 powder@NF and NiFe-
MOF-2/NF, the Cdl of NiFe-MOF-2 powder@CC and NiFe-MOF-2 powder@CFP mostly 
derived from carbon supports.3 NiFe-MOF-2/NF shows a higher Cdl (1.56 mF cm-2) 
than that of NiFe-MOF-2 powder@NF (1.32 mF cm-2), indicating more accessible 
active sites of NiFe-MOF-2/NF.



Fig. S14 (a) Nyquist plots of electrodes at the overpotential of 250 mV, (b) enlarge 
Nyquist plots in the high frequency region.

Note: To further investigate the significant difference in OER performance among 
the four samples, EIS were carried out (Fig. S14). As expected, NiFe-MOF-2/NF 
exhibits the smallest semicircle radius in contrast to NiFe-MOF-2 powder@substrate 
samples, implying the lowest Rct and fastest electron transfer kinetics. In addition, 
NiFe-MOF-2 powder@NF possesses much smaller Rct than NiFe-MOF-2 powder@CC 
and NiFe-MOF-2 powder@CFP, which indicates that the improved OER performance 
of NiFe-MOF-2 powder@NF may result from enhanced conductivity of the NF 
substrate.

Fig. S15 CV curves of (a) NiFe-MOF-2/NF, (b) NiFe-MOF-2 powder@NF, (c) Fe-
MOF/NF, (d) Ni-MOF/NF and (e) NiFe-MOF-NF at different scan rates in the potential 

range of -0.05–0.05 V vs Hg/HgO.



Fig. S16 ECSA-normalized polarization curves for NiFe-MOF-2/NF, NiFe-MOF-2 
powder@NF, FeMOF/NF, Ni-MOF/NF and NiFe-MOF-NF.

Fig. S17 LSV curves of NiFe-MOF-2/NF before and after stability test.



Fig. S18 (a) XRD patterns of NiFe-MOF-2/NF after stability test; (b) SEM, (c) TEM and  
(d) HRTEM images of NiFe-MOF-2/NF after stability test.

Fig. S19 FT-IR spectra of NiFe-MOF-2/NF after stability test.



Fig. S20 Raman spectra of NiFe-MOF-2/NF after stability test.

Fig. S21 High-resolution XPS spectra of (a) Fe 2p, (b) Ni 2p and (c) O 1s for NiFe-MOF-
2/NF after stability test.



Table S1. Comparison of OER performance of NiFe-MOF-2/NF with various NiFe-based OER 
electrocatalysts in 1 M KOH.

Catalyst Substrates
η@10 

mA cm-2

mV

η@100 
mA cm-2

mV

Tafel 
Slope

mV dec-1

Stability 
test

Referenc
e

NiFe-MOF-2/NF NF 209 260 36.4 24 h This work

MIL-88A/Ni(OH)2 CC 250 - 36.4 40 h 4

Ni3S2@Fe(OH)2 GCE 230 288 33.1 300 h 5

Ni-Fe-MOFs NSs GCE 221 - 56 20 h 6

Fe7.2%-Ni3S2 NSs/NF NF 295 - 71 10 h 7

FeCo-MOF-EH/NF NF 231 - 42 30 h 8

NiFe-NFF NFF 227 253 38.9 15 h 9

Fe1Ni2(BDC-NH2)/NF NF 228 - 30.3 12 h 10

(Fe-Ni)Cox-OH/Ni3S2 NF - 280 57 100 h 11

NiFeZr LDHs NF 198 - 53.1 12 h 12

FeNi-HDNAs NF 206 300 91.66 10 h 13

Ni3Se4@NiFe LDH/CFC CFC 223 290 55.5 100 h 14

NiV-LDH@FeOOH NF - 297 57.3 20 h 15

Ni2P@FePOxHy NF 220 260 43 288 h 16

CoNiFe-OH-1M NF 207 261 52.1 60 h 17

HOoct-NFO NC/IF IF 260 290 36.1 50 h 18
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