Synthesis of disubstituted furans catalysed by $[(AuCI)_2(\mu - bis(phosphino)metallocene)]$ and $Na[BArF_{24}]$

Reilly K. Gwinn, Anna E. Boggess, Elizabeth P. Winter and Chip Nataro*

Fig.	Table		Pg.
S1		¹ H NMR spectrum of [(AuCl) ₂ (μ -dppr)] in CDCl ₃ .	S2
S2		¹ H COSY NMR spectrum of [(AuCl) ₂ (μ -dppr)] in CDCl ₃ .	S3
S3		³¹ P{ ¹ H} NMR spectrum of [(AuCl) ₂ (μ -dppr)] in CDCl ₃ .	S4
S4		¹³ C{ ¹ H} NMR spectrum of [(AuCl) ₂ (μ -dppr)] in CDCl ₃ .	S5
S5		DEPT-135 ¹³ C NMR spectrum of [(AuCl) ₂ (μ -dppr)] in CDCl ₃ .	S6
S6		$^{13}C^{-1}H$ HMBC NMR spectrum of [(AuCl) ₂ (μ -dppr)] in CDCl ₃ .	S7
S7		¹³ C- ¹ H HSQC NMR spectrum of [(AuCl) ₂ (μ -dppr)] in CDCl ₃ .	S8
S8		¹ H NMR spectrum of [(AuCl) ₂ (μ -dppo)] in CDCl ₃ .	S9
S9		¹ H COSY NMR spectrum of [(AuCl) ₂ (μ -dppo)] in CDCl ₃ .	S10
S10		$^{31}P{^{1}H}$ NMR spectrum of [(AuCl) ₂ (μ -dppo)] in CDCl ₃ .	S11
S11		¹³ C{ ¹ H} NMR spectrum of [(AuCl) ₂ (μ -dppo)] in CDCl ₃ .	S12
S12		DEPT-135 ¹³ C NMR spectrum of [(AuCl) ₂ (μ -dppo)] in CDCl ₃ .	S13
S13		¹³ C- ¹ H HMBC NMR spectrum of [(AuCl) ₂ (μ -dppo)] in CDCl ₃ .	S14
S14		¹³ C- ¹ H HSQC NMR spectrum of [(AuCl) ₂ (μ -dppo)] in CDCl ₃ .	S15
	S1	Crystallographic data for [(AuCl) ₂ (μ -dppr)] and [(AuCl) ₂ (μ -dppo)].	S16
S15		SambVca results for [(AuCl) ₂ (μ-dppr)].	S17
S16		SambVca results for [(AuCl) ₂ (μ-dppo)].	S18
		Characterization of furan products	S19
S17		Proton (left) and carbon (right) numbering scheme for 2,4-di(2-	S20
		pyridyl)furan.	
S18		¹ H NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl ₃ .	S21
S19		¹³ C{ ¹ H} NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl ₃ .	S22
S20		¹³ C DEPT NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl ₃ .	S23
S21		¹³ C- ¹ H HMBC NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl ₃ .	S24
S22		¹³ C- ¹ H HSQC NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl ₃ .	S25
S23		Predicted ¹ H NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl ₃ .	S26
S24		Predicted ${}^{13}C{}^{1}H$ NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl ₃ .	S27
		References	S28

Supporting Information

Fig. S1. ¹H NMR spectrum of [(AuCl)₂(μ -dppr)] in CDCl₃.

Fig. S2. ¹H COSY NMR spectrum of [(AuCl)₂(μ -dppr)] in CDCl₃.

Fig. S3. ${}^{31}P{}^{1}H$ NMR spectrum of [(AuCl)₂(μ -dppr)] in CDCl₃.

Fig. S4. ${}^{13}C{}^{1}H$ NMR spectrum of [(AuCl)₂(μ -dppr)] in CDCl₃.

134 132 130 128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 76 74 f1 (ppm)

Fig. S5. DEPT-135 ^{13}C NMR spectrum of [(AuCl)_2($\mu\text{-dppr})$] in CDCl_3.

Fig. S6. ${}^{13}C{}^{-1}H$ HMBC NMR spectrum of [(AuCl)₂(μ -dppr)] in CDCl₃.

Fig. S7. ¹³C-¹H HSQC NMR spectrum of [(AuCl)₂(μ -dppr)] in CDCl₃.

Fig. S8. ¹H NMR spectrum of [(AuCl)₂(μ -dppo)] in CDCl₃.

Fig. S9. ¹H COSY NMR spectrum of [(AuCl)₂(μ -dppo)] in CDCl₃.

Fig. S10. $^{31}P\{^{1}H\}$ NMR spectrum of [(AuCl)_2($\mu\text{-dppo})$] in CDCl_3

Fig. S11. ${}^{13}C{}^{1}H$ NMR spectrum of [(AuCl)₂(μ -dppo)] in CDCl₃.

Fig. S12. DEPT-135 ^{13}C NMR spectrum of [(AuCl)_2($\mu\text{-dppo})$] in CDCl_3.

Fig. S13. $^{13}C^{-1}H$ HMBC NMR spectrum of [(AuCl)₂(μ -dppo)] in CDCl₃.

Fig. S14. ${}^{13}C{}^{-1}H$ HSQC NMR spectrum of [(AuCl)₂(μ -dppo)] in CDCl₃.

	[(AuCl)₂(µ-dppr)]	[(AuCl)₂(μ-dppo)]
formula	$C_{34}H_{28}Au_2Cl_2P_2Ru$	$C_{34}H_{28}Au_2Cl_2OsP_2$
fw	1064.41	1153.54
crystal system	monoclinic	monoclinic
space group	P2 ₁ /n	P2 ₁ /n
<i>a,</i> Å	8.7596(7)	8.7482(2)
<i>b,</i> Å	16.7100(12)	16.7111(5)
<i>c,</i> Å	10.6881(7)	10.6925(3)
lpha, deg	90	90
eta, deg	94.805(6)	94.880(2)
γ, deg	90	90
V, Å ³	1559.0(2)	1557.49(7)
Z	2	2
cryst. size, mm	0.453 x 0.400 x 0.214	0.517 x 0.412 x 0.188
cryst. color	Yellow	Colorless
radiation	0.71073	0.71073
temp, K	100.0(1)	100.1(1)
2 $ heta$ range, deg	4.536-61.136	4.534-61.112
data collected		
h	-12 to 12	-12 to 12
k	-23 to 23	-23 to 23
1	-13 to 14	-15 to 15
no. of data	15987	15974
collected		
no. of unique data	4527	4523
abs. corr.	SCALE3 ABSPACK	SCALE3 ABSPACK
final R indices		
R1	0.0251	0.0321
wR2	0.0663	0.0814
goodness of fit	1.103	1.050

Table S1. Crystallographic data for $[(AuCl)_2(\mu$ -dppr)] and $[(AuCl)_2(\mu$ -dppo)].

%V Free	%V Buried	%V Tot/V Ex		
64.5	35.5	99.9		

Quadrant	V f	Vb	Vt	%V f	%V b
SW	30.3	14.6	44.9	67.5	32.5
NW	28.3	16.6	44.9	63.1	36.9
NE	31.3	13.5	44.9	69.8	30.2
SE	25.8	19.1	44.9	57.5	42.5

Fig. S15. SambVca results for [(AuCl)₂(μ -dppr)].

%V Free	%V Buried	%V Tot/V Ex		
64.4	35.6	99.9		

Quadrant	Vf	Vb	Vt	%V f	%V b
SW	28.8	16.1	44.9	64.2	35.8
NW	24.9	20.0	44.9	55.5	44.5
NE	32.1	12.7	44.9	71.7	28.3
SE	29.7	15.2	44.9	66.2	33.8

Fig. S16. SambVca results for $[(AuCl)_2(\mu$ -dppo)].

Characterization of furan products

2,5-diphenylfuran: ¹H and ¹³C{¹H} NMR spectra were in good agreement with the literature.¹

2,5-di(3-tolyl)furan: ¹H and ¹³C{¹H} NMR spectra were in good agreement with the literature.²

2,5-di(4-*tert*-butylphenyl)furan: ¹H and ¹³C{¹H} NMR spectra were in good agreement with the literature.²

2,5-di-n-pentylfuran: ¹H and ¹³C{¹H} NMR spectra were in good agreement with the literature.³

2,5-dicyclopropylfuran: The ¹H NMR spectrum was in good agreement with the reported spectrum.⁴ ¹³C{¹H} NMR: δ (ppm) 152.6 (s, No DEPT), 106.1 (s, DEPT +), 10.5 (s, DEPT +), 6.5 (s, DEPT -).

2,5-dibenzylfuran: ¹H NMR (400 MHz, CDCl₃) δ 7.24 (m, 4H, -*Ph*), 7.17 (m, 6H, -*Ph*), 5.94 (s, 2H, =*CH*), 3.79 (m, 4H, -*CH*₂-). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.7 (s, No DEPT), 137.6 (s, No DEPT), 130.1 (S, DEPT +), 128.8 (s, DEPT +), 124.0 (s, No DEPT), 108.7 (s, DEPT +), 38.9 (s, DEPT -).

2,5-di(4-pentynyl)furan: ¹H NMR (400 MHz, CDCl₃) δ 6.02 (s, 2H, =CH), 2.74 (m, 4H, -CH₂-), 2.42 (m, 4H, -CH₂-), 2.10 (t, *J* = 2.6 Hz, 2H, ≡CH), 1.82 (m, 4H, -CH₂-). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.2 (s, No DEPT), 107.1 (s, DEPT +), 84.1 (s, no DEPT), 70.4 (s, DEPT +), 28.1 (s, DEPT -), 25.7 (s, DEPT -), 17.5 (s, DEPT -).

2,5-di(5-hexynyl)furan: ¹H NMR (400 MHz, CDCl₃) δ 5.96 (s, 2H, =CH), 2.69 (m, 4H, -CH₂-), 2.44 (m, 4H, -CH₂-), 2.00 (t, *J* = 2.5 Hz, 2H, ≡CH), 1.71 (m, 4H, -CH₂-), 1.52 (m, 2H, -CH₂-). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.0 (s, No DEPT), 106.3 (s, DEPT +), 84.0 (s, no DEPT), 68.7 (s, DEPT +), 29.4 (s, DEPT -), 27.3 (s, DEPT -), 26.3 (s, DEPT -), 18.3 (s, DEPT -).

Fig. S17. Proton (left) and carbon (right) numbering scheme for 2,4-di(2-pyridyl)furan.

¹H NMR (400 MHz, CDCl₃) δ 10.08 (d, *J* = 7.1 Hz, 1H, H2), 8.72 (d, *J* = 4.9 Hz, 1H, H10), 8.06 (dd, *J* = 12.4, 6.3 Hz, 2H), 7.88 (t, *J* = 7.8 Hz, 1H), 7.58 (dd, *J* = 8.7, 1.2 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.21 (d, *J* = 8.7 Hz, 1H), 6.95 (d, *J* = 7.0 Hz, 1H), 6.59 (d, *J* = 4.8 Hz, 1H).

Fig. S18. ¹H NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl₃.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz, CDCl₃) δ 180.23 (C9), 157.53 (C3), 148.31 (C14), 139.92, 136.86, 129.20 (C4), 128.38, 125.12, 124.75, 123.79, 122.20, 118.61, 114.00, 103.53.

Fig. S19. ¹³C{¹H} NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl₃.

Fig. S20. ¹³C DEPT NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl₃.

Fig. S21. ¹³C-¹H HMBC NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl₃.

Fig. S22. ¹³C-¹H HSQC NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl₃.

Fig. S23. Predicted⁵ ¹H NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl₃.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.79 (dd, *J* = 4.0, 1.7 Hz, 1H), 8.56 (dd, *J* = 4.0, 1.7 Hz, 1H), 8.17 (d, *J* = 1.8 Hz, 1H), 7.82 (qd, *J* = 7.3, 1.6 Hz, 2H), 7.76 – 7.67 (m, 2H), 7.43 (ddd, *J* = 7.2, 4.0, 1.5 Hz, 1H), 7.33 (s, 0H), 7.27 (ddd, *J* = 7.0, 4.0, 1.5 Hz, 1H).

Fig. S24. Predicted⁵ ¹³C{¹H} NMR spectrum of 2,4-di(2-pyridyl)furan in CDCl₃.

¹³C NMR (100 MHz, Chloroform-*d*) δ 153.75, 153.22, 150.24, 150.17, 148.86, 141.54, 137.76, 136.41, 125.39, 122.83, 122.46, 122.25, 119.02, 106.65.

References

- 1 D. Alickmann, R. Fröhlich, A. H. Maulitz and E. U. Würthwein, *Eur. J. Org. Chem.*, 2002, 1523–1537.
- 2 M. Zhang, H. F. Jiang, H. Neumann, M. Beller and P. H. Dixneuf, *Angew. Chem., Int. Ed.*, 2009, **48**, 1681–1684.
- 3 K. Tanaka, T. Shoji and M. Hirano, *Eur. J. Org. Chem.*, 2007, 2687–2699.
- 4 Spectrum available from Enamine Ltd. (EN300-378678.nmr.y2020).
- 5 Predicted using MestReNova ver. 14.3.0-30573.