Supporting Information

Architecting NiFe-LDH/MXene nano-arrays hybrid toward

exceptional capacitive lithium storage

Jian Shen, Guangxu Yang, Guangbin Duan*, Xi Guo, Li Li*, Bingqiang

Cao

School of Materials Science and Engineering, University of Jinan, Jinan

250022, Shandong, China

*Corresponding authors at: School of Materials Science and Engineering,

University of Jinan, Jinan 250022, PR China.

Tel.: +86 531 82765473; fax: +86 531 87974453.

E-mail addresses: mse_lil@ujn.edu.cn (L. Li), mse_duangb@ujn.edu.cn

(G. Duan)

Figure S1. SEM images of (a-b) Ti₃C₂T_x-MXene, (c-d) NiFe-LDH, (e-f) NiFe-LDH /MXene-50, (g-h) NiFe-LDH /MXene-200.

Figure S2. High-resolution XPS spectra of (a) C 1s, (b) Ni 2p, (c) Fe 2p, (d) Ti 2p, (e)

O 1s for NiFe-LDH/MXene-500.

Figure S3. Raman spectra of NiFe-LDH, Mxene and NiFe-LDH /MXene-500.

Electrode	NiFe-	NiFe-	NiFe-	NiFe-	MXene
materials	LDH	LDH/MXene	LDH/MXene	LDH/MXene	
		-50	-200	-500	
Specific surface	223.3	77.77	54.98	41.07	2.04
area (m 2 g $^{-1}$)	1				
Total pore	0.439	0.2908	0.1691	0.1305	0.0181
volume (cm ³ g ⁻¹)	9				

Table S1. The specific surface areas and total pore volumes of the samples.

Figure S4. CV curves at a scan rate of 0.2 mV s⁻¹ for (a) NiFe-LDH, (b)NiFe-LDH/MXene-50, (c) NiFe-LDH/MXene-200 and (d) MXene.

Figure S5. GCD profiles of (a)NiFe-LDH, (b) NiFe-LDH/MXene-50, (c) NiFe-LDH/Mxene-200, (d) MXene.

Figure S6. (a) Comparison of cyclability of the NiFe-LDH and MXene at 200 mA g^{-1} . (b) Cycling performance of the NiFe-LDH/MXene-500 electrode at 1000 mA g^{-1} . (c) Comparison of rate capacity of the NiFe-LDH/MXene hybrid materials. (d) Comparisons in the rate capabilities between this work and other LDH-based electrodes.

Figure S7. XPS spectra of (a) survey scan; (b-c) Fe 2p, and Ni 2p of NiFe-LDH/MXene hybrid materials and NiFe-LDH; and (d) Ti 2p of NiFe-LDH/MXene-500 electrodes after 50 cycles.

Table S2. Comparison of electrochemical performance of LDH-based materials in

LIBs.

Materials	Cycling	Rate performance	Ref.
	performance (mAh	(mAh g ⁻¹ at A g ⁻¹)	
	g ⁻¹ at A g ⁻¹)		
Ni _x Co _{2x} (OH) _{6x} @eRG	373.0 at 1 (500 cycles)	950.0 at 0.1, 160.0 at 1	1
Si@NiAl-LDH	534.0 at 0.05 (60 ycles)	619.5 at 0.1, 142.3 at 1	2
H-(Ni,Co)-LDHP	355.4 at 0.1 (50 cycles)	560.3 at 0.1, 103.6 at 1	3

Reference

[1] J. Shi, N. Du, W. Zheng, X. Li, Y. Dai, G. He, Ultrathin Ni-Co double hydroxide nanosheets with conformal graphene coating for highly active oxygen evolution reaction and lithium ion battery anode materials, Chem. Eng. J., 327 (2017) 9-17.

[2] Q. Li, Y. Wang, B. Lu, J. Yu, M. Yuan, Q. Tan, Z. Zhong, F. Su, Hollow core-shell structured Si@NiAl-LDH composite as high-performance anode material in lithiumion batteries, Electrochim. Acta, 331 (2020) 135331.

[3] Y. Lu, Y. Du, H. Li, Template-sacrificing synthesis of Ni-Co layered double hydroxides polyhedron as advanced anode for lithium ions battery, Front. Chem., 8 (2020) 581653.