## ELECTRONIC SUPPLEMENTARY INFORMATION

**X-ray Crystallography.** Single crystals of **2** were obtained with the procedure described in Ref.<sup>1</sup> and were protected with vacuum grease until measurement. The selected crystal was mounted with low temperature epoxy resin to a graphite fibre to enable conduction cooling inside a vacuum chamber. Further details on the experimental setup have been described elsewhere.<sup>2</sup>

The most intense peaks in the diffraction pattern fit a tetragonal body-centered lattice with unit cell vectors ( $\mathbf{a}_l$ ,  $\mathbf{b}_l$ ,  $\mathbf{c}_l$ ) similar to those reported by Peng's group ( $a_l = b_l \sim 10.8$  Å,  $c_l \sim 26.2$  Å at room temperature).<sup>3</sup> Solution and refinement in space-group *I*4/*m* indeed affords the heavily disordered structure published by these authors.<sup>3</sup> Full indexing requires a primitive tetragonal lattice ( $\mathbf{a}_P$ ,  $\mathbf{b}_P$ ,  $\mathbf{c}_P$ ) with  $a_P = b_P = a_l\sqrt{2} \sim 15.3$  Å,  $c_l = c_P$ , and  $\mathbf{a}_P$  and  $\mathbf{b}_P$  directed along the bisectors of  $\mathbf{a}_l$  and  $\mathbf{b}_l$ . However, systematic absences (*hkl*: *h+l and k+l* odd) are impossible for a tetragonal space group. Furthermore, among *hk*0 reflections only those with even *h and k* are observed, while 00*l* is of course observed only for even *l*. Monoclinic space-group *A*2/*a* (*z* unique axis) pseudomerohedrally twinned by 90° rotation along *z* gives exactly such systematic absences. Due to twinning, reflection *hkl* overlaps with *k*–*hl* and this adds intensity to the reflections of the prime component with *k+l* = odd, unless *h+l* is also odd. An *a*-type glide plane combined with an *A* lattice requires *h and k* to be even in observable *hk*0 reflections. Since twinning overlaps *hk*0 with *k*–*h*0, this condition remains valid also for the twinned sample. An obvious relabelling of unit cell axes to have *y* as the unique axis leads to space group *C*2/*c*, which was used for the final integration of data collection frames.



Fig. S1 (a) Cr-N distances and (b) cis N-Cr-N angles in 2 at different temperatures.



**Fig. S2** (a)  $U_{11}$ , (b)  $U_{33}$ , (c)  $U_{13}$ , and (d)  $U_t$  values for metal atoms, N11, and N12 in **2** at different temperatures.  $U_t$  was obtained by averaging the principal mean-square atomic displacements orthogonal to *y*. Notice that  $U_{12} = U_{23} = 0$  by symmetry.



Fig. S3 (a) Prolateness of displacement ellipsoids and (b) difference between  $U_{22}$  values of neighbouring atoms in 2 at different temperatures.

| formula                            | $C_{62}H_{44}Cr_5N_{22}S_2$                                     |                                               |              |              |              |  |  |  |  |
|------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|--------------|--------------|--------------|--|--|--|--|
| M (g mol <sup>-1</sup> )           | 1421.31                                                         |                                               |              |              |              |  |  |  |  |
| <i>T</i> (K)                       | 292 <sup><i>a</i></sup> 100 15 3 29                             |                                               |              |              |              |  |  |  |  |
| crystal system                     | monoclinic                                                      |                                               |              |              |              |  |  |  |  |
| space group                        |                                                                 | <i>C</i> 2/ <i>c</i> (No. 15)                 |              |              |              |  |  |  |  |
| a (Å)                              | 15.2547(4)                                                      | 15.1037(4)                                    | 15.0601(4)   | 15.0605(4)   | 15.2426(3)   |  |  |  |  |
| <i>b</i> (Å)                       | 26.2195(8)                                                      | 26.1632(8)                                    | 26.1633(7)   | 26.1672(7)   | 26.2039(7)   |  |  |  |  |
| <i>c</i> (Å)                       | 15.2032(4)                                                      | 15.2032(4) 15.0198(4) 14.9768(4) 14.9728(4)   |              |              |              |  |  |  |  |
| α (°)                              |                                                                 |                                               | 90.000       | •            |              |  |  |  |  |
| $\beta$ (°)                        | 90.0121(16)                                                     | 90.0121(16) 90.0189(16) 90.0266(16) 90.023(2) |              |              |              |  |  |  |  |
| γ(°)                               |                                                                 |                                               | 90.000       |              |              |  |  |  |  |
| $V(Å^3)$                           | 6080.8(3)         5935.2(3)         5901.2(3)         5900.6(3) |                                               |              |              | 6073.4(2)    |  |  |  |  |
| Ζ                                  |                                                                 | 4                                             |              |              |              |  |  |  |  |
| $ ho_{ m calcd}~( m g~ m cm^{-3})$ | 1.553 1.591 1.600 1.600                                         |                                               |              |              | 1.554        |  |  |  |  |
| crystal size (mm <sup>3</sup> )    | 0.38×0.25×0.25                                                  |                                               |              |              |              |  |  |  |  |
| $\lambda$ (Å)                      |                                                                 |                                               | 0.71073      |              |              |  |  |  |  |
| $\mu$ (mm <sup>-1</sup> )          | 0.996                                                           | 1.020 1.026 1.026                             |              | 1.026        | 0.997        |  |  |  |  |
| $	heta_{ m max}$ (°)               | 26.382                                                          | 26.364                                        | 26.377       | 26.376       | 26.368       |  |  |  |  |
| refls. coll./indep.                | 5214/5214                                                       | 5092/5092                                     | 5069/5069    | 5064/5064    | 5213/5213    |  |  |  |  |
| params./restrs.                    | 417/466                                                         |                                               |              |              |              |  |  |  |  |
| <i>R</i> 1                         | 0.0704                                                          | 0.0426                                        | 0.0420       | 0.0413       | 0.0564       |  |  |  |  |
| wR2                                | 0.1585                                                          | 0.1008                                        | 0.1023       | 0.1005       | 0.1159       |  |  |  |  |
| $R1 [I > 2\sigma(I)]$              | 0.0506                                                          | 0.0335                                        | 0.0349       | 0.0343       | 0.0360       |  |  |  |  |
| $wR2 [I > 2\sigma(I)]$             | 0.1344                                                          | 0.0921                                        | 0.0961       | 0.0942       | 0.0985       |  |  |  |  |
| GOF                                | 1.061 1.042 1.051 1.050 1.016                                   |                                               |              |              |              |  |  |  |  |
| res. max/min (eÅ <sup>-3</sup> )   | 0.706/-1.047                                                    | 0.789/-1.158                                  | 0.795/-1.064 | 0.754/-1.042 | 0.299/-0.833 |  |  |  |  |

Table S1 Crystal data and refinement parameters for  $\mathbf{2}$  at different temperatures.

<sup>*a*</sup>Before cooling down. <sup>*b*</sup>After cooling down.

Table S2 Cr-N distances (Å) in 2 at different temperatures (K).

| Т                | Cr1-N11 <sup>a</sup> | Cr1-N1   | Cr1-N6   | Cr2-N2   | Cr2-N7   | Cr3-N3   | Cr3-N8   | Cr4-N4   | Cr4-N9   | Cr5-N5   | Cr5-N10  | Cr5-N12 <sup>a</sup> |
|------------------|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------------|
| 292 <sup>b</sup> | 2.215(5)             | 2.120(5) | 2.101(5) | 2.024(3) | 2.025(3) | 2.051(7) | 2.066(6) | 2.035(3) | 2.036(3) | 2.097(5) | 2.088(5) | 2.304(5)             |
| 3                | 2.189(4)             | 2.115(3) | 2.100(3) | 2.028(2) | 2.029(2) | 2.071(5) | 2.053(5) | 2.035(2) | 2.037(2) | 2.094(3) | 2.082(3) | 2.316(4)             |
| 15               | 2.191(4)             | 2.115(3) | 2.100(3) | 2.027(2) | 2.029(2) | 2.069(5) | 2.054(5) | 2.036(2) | 2.038(2) | 2.092(3) | 2.084(3) | 2.313(4)             |
| 100              | 2.188(4)             | 2.117(3) | 2.098(3) | 2.027(2) | 2.027(2) | 2.054(6) | 2.067(5) | 2.034(2) | 2.035(2) | 2.090(3) | 2.086(3) | 2.312(4)             |
| 292 <sup>c</sup> | 2.207(4)             | 2.112(4) | 2.103(4) | 2.024(3) | 2.027(3) | 2.062(6) | 2.058(6) | 2.030(3) | 2.036(3) | 2.099(4) | 2.086(4) | 2.304(4)             |

<sup>a</sup>Nitrogen donor of isothiocyanato ligand. <sup>b</sup>Before cooling down. <sup>c</sup>After cooling down.

**Table S3** Deviation (Å) of Cr atoms from the mean plane through their equatorial N donors in 2 at different temperatures (K).<sup>*a*</sup>

| Т                | Cr1         | Cr2        | Cr3         | Cr4        | Cr5        |
|------------------|-------------|------------|-------------|------------|------------|
| $292^{b}$        | -0.2067(21) | 0.0412(20) | -0.0634(21) | 0.1363(20) | 0.0741(21) |
| 3                | -0.2352(16) | 0.1031(16) | -0.1102(17) | 0.1986(16) | 0.0267(16) |
| 15               | -0.2321(16) | 0.0978(16) | -0.1054(17) | 0.1936(16) | 0.0317(16) |
| 100              | -0.2318(16) | 0.0961(16) | -0.1052(17) | 0.1900(16) | 0.0333(16) |
| 292 <sup>c</sup> | -0.2043(18) | 0.0429(17) | -0.0627(19) | 0.1356(17) | 0.0753(18) |

<sup>*a*</sup>A positive deviation is a displacement along the Cr1-Cr5 vector. <sup>*b*</sup>Before cooling down. <sup>*c*</sup>After cooling down.

| Т                       | $U_{11}(N11^b)$          | <i>U</i> <sub>11</sub> (Cr1) | <i>U</i> <sub>11</sub> (Cr2) | <i>U</i> <sub>11</sub> (Cr3) | <i>U</i> <sub>11</sub> (Cr4) | <i>U</i> <sub>11</sub> (Cr5) | $U_{11}(N12^b)$          |
|-------------------------|--------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------|
| 292 <sup>c</sup>        | 0.047(5)                 | 0.0381(9)                    | 0.0287(8)                    | 0.0262(9)                    | 0.0282(7)                    | 0.0359(8)                    | 0.045(5)                 |
| 3                       | 0.010(3)                 | 0.0061(5)                    | 0.0053(4)                    | 0.0026(6)                    | 0.0058(4)                    | 0.0073(5)                    | 0.013(3)                 |
| 15                      | 0.012(3)                 | 0.0060(5)                    | 0.0060(4)                    | 0.0029(6)                    | 0.0065(5)                    | 0.0074(5)                    | 0.015(3)                 |
| 100                     | 0.018(4)                 | 0.0158(6)                    | 0.0110(5)                    | 0.0100(7)                    | 0.0109(5)                    | 0.0165(6)                    | 0.021(4)                 |
| $292^d$                 | 0.054(5)                 | 0.0342(8)                    | 0.0264(7)                    | 0.0222(8)                    | 0.0258(7)                    | 0.0328(8)                    | 0.052(5)                 |
|                         |                          | . ,                          | ,                            |                              | . ,                          | . ,                          |                          |
| Т                       | $U_{22}(N11^b)$          | $U_{22}(Cr1)$                | <i>U</i> <sub>22</sub> (Cr2) | $U_{22}(Cr3)$                | U <sub>22</sub> (Cr4)        | $U_{22}(Cr5)$                | $U_{22}(N12^b)$          |
| 292 <sup>c</sup>        | 0.040(3)                 | 0.0404(6)                    | 0.0564(6)                    | 0.0513(6)                    | 0.0574(6)                    | 0.0456(6)                    | 0.049(3)                 |
| 3                       | 0.017(2)                 | 0.0184(4)                    | 0.0283(4)                    | 0.0262(4)                    | 0.0293(5)                    | 0.0240(4)                    | 0.017(2)                 |
| 15                      | 0.016(2)                 | 0.0196(4)                    | 0.0299(5)                    | 0.0279(4)                    | 0.0311(5)                    | 0.0253(5)                    | 0.018(2)                 |
| 100                     | 0.021(2)                 | 0.0236(4)                    | 0.0345(5)                    | 0.0317(4)                    | 0.0358(5)                    | 0.0296(5)                    | 0.025(2)                 |
| $292^{d}$               | 0.040(3)                 | 0.0429(5)                    | 0.0586(5)                    | 0.0544(5)                    | 0.0605(5)                    | 0.0487(5)                    | 0.047(3)                 |
|                         |                          |                              |                              |                              |                              |                              |                          |
| Т                       | $U_{33}(N11^b)$          | <i>U</i> <sub>33</sub> (Cr1) | <i>U</i> <sub>33</sub> (Cr2) | <i>U</i> <sub>33</sub> (Cr3) | <i>U</i> <sub>33</sub> (Cr4) | $U_{33}({\rm Cr5})$          | $U_{33}(N12^b)$          |
| 292 <sup>c</sup>        | 0.069(6)                 | 0.0372(9)                    | 0.0310(8)                    | 0.0252(9)                    | 0.0272(7)                    | 0.0295(8)                    | 0.059(6)                 |
| 3                       | 0.018(4)                 | 0.0120(6)                    | 0.0082(5)                    | 0.0108(7)                    | 0.0115(5)                    | 0.0164(6)                    | 0.024(4)                 |
| 15                      | 0.017(4)                 | 0.0127(6)                    | 0.0082(5)                    | 0.0108(7)                    | 0.0112(5)                    | 0.0171(6)                    | 0.022(4)                 |
| 100                     | 0.030(4)                 | 0.0165(6)                    | 0.0139(5)                    | 0.0129(7)                    | 0.0157(5)                    | 0.0175(6)                    | 0.032(4)                 |
| $292^{d}$               | 0.064(6)                 | 0.0410(9)                    | 0.0331(7)                    | 0.0286(9)                    | 0.0291(7)                    | 0.0327(8)                    | 0.055(5)                 |
|                         |                          |                              |                              |                              |                              |                              |                          |
| Т                       | $U_{13}(N11^b)$          | $U_{13}({\rm Cr1})$          | $U_{13}(Cr2)$                | $U_{13}(Cr3)$                | <i>U</i> <sub>13</sub> (Cr4) | $U_{13}({\rm Cr5})$          | $U_{13}(N12^b)$          |
| $292^{c}$               | 0.004(6)                 | -0.0015(9)                   | -0.0010(8)                   | -0.0029(11)                  | -0.0004(8)                   | -0.0007(9)                   | 0.001(6)                 |
| 3                       | -0.001(3)                | -0.0002(5)                   | -0.0006(4)                   | -0.0012(6)                   | -0.0011(4)                   | -0.0010(6)                   | -0.005(4)                |
| 15                      | -0.004(3)                | -0.0001(5)                   | -0.0005(4)                   | -0.0015(6)                   | -0.0011(4)                   | -0.0009(6)                   | -0.008(4)                |
| 100                     | 0.000(4)                 | -0.0011(6)                   | -0.0007(4)                   | -0.0013(6)                   | -0.0009(4)                   | -0.0015(6)                   | -0.004(4)                |
| $292^{d}$               | -0.003(6)                | -0.0004(8)                   | 0.0001(7)                    | 0.0001(9)                    | 0.0009(7)                    | 0.0013(8)                    | -0.006(5)                |
|                         |                          |                              |                              |                              |                              |                              |                          |
| Т                       | $U_{\rm t}({\rm N11}^b)$ | $U_{t}(Cr1)$                 | $U_{\rm t}({\rm Cr2})$       | $U_{\rm t}({\rm Cr3})$       | $U_{\rm t}({\rm Cr4})$       | $U_{\rm t}({\rm Cr5})$       | $U_{\rm t}({\rm N12}^b)$ |
| 292 <sup><i>c</i></sup> | 0.0577                   | 0.0377                       | 0.0299                       | 0.02575                      | 0.0277                       | 0.0327                       | 0.05195                  |
| 3                       | 0.01395                  | 0.00905                      | 0.00675                      | 0.0067                       | 0.00865                      | 0.01185                      | 0.01875                  |
| 15                      | 0.01435                  | 0.00935                      | 0.00705                      | 0.0069                       | 0.00885                      | 0.01225                      | 0.01865                  |
| 100                     | 0.0242                   | 0.0161                       | 0.0124                       | 0.01145                      | 0.0133                       | 0.01705                      | 0.02635                  |
| $292^{d}$               | 0.05895                  | 0.0376                       | 0.02975                      | 0.0254                       | 0.0275                       | 0.03275                      | 0.0536                   |

**Table S4** Mean-square displacement amplitudes ( $Å^2$ ) in **2** at different temperatures (K).<sup>*a*</sup>

<sup>*a*</sup>By symmetry,  $U_{12} = U_{23} = 0$  and  $U_{22}$  is a principal component of the *U*-tensor. <sup>*b*</sup>Nitrogen donor of isothiocyanato ligand. <sup>*c*</sup>Before cooling down. <sup>*d*</sup>After cooling down.

## References

- A. Cornia, A.-L. Barra, V. Bulicanu, R. Clérac, M. Cortijo, E. A. Hillard, R. Galavotti, A. Lunghi, A. Nicolini, M. Rouzières, L. Sorace and F. Totti, *Inorg. Chem.*, 2020, **59**, 1763–1777.
- 2 M. R. Probert, C. M. Robertson, J. A. Coome, J. A. K. Howard, B. C. Michell and A. E. Goeta, *J. Appl. Crystallogr.*, 2010, **43**, 1415–1418.
- H. Chang, J. Li, C. Wang, T. Lin, H.-C. Lee, G. Lee and S. Peng, *Eur. J. Inorg. Chem.*, 1999, 1999, 1243–1251.