Ruthenium nitrosyl complex based highly selective colorimetric sensor for biological H₂S and H₂S-NO cross talk regulated release of NO

Nancy Sharma^a, Vinod Kumar^a and D. Amilan Jose^{*a}

^aDepartment of Chemistry, National Institute of Technology (NIT) Kurukshetra,

Kurukshetra -136119, Haryana, INDIA

Email: amilanjosenit@nitkkr.ac.in and amilanjose@gmail.com

1. Materials

Modified Greiss reagent, ammonium hexafluorophosphate, Sodium Hydrosulfide (NaHS), 1chloride, potassium pentachloronitrosylruthenate(II), bromooctadecane, potassium Tetrabutylammonium salts of various anions (F, Cl, Br, I, CN, CH₃COO, NO₃, HSO₄, PO₄^{3⁻}, PPi), Adenosine-5'-triphosphate disodium salt hydrate, Adenosine-5'-diphosphate sodium salt and Adenosine-5'-monophosphate sodium salt were purchased from Sigma-Aldrich. All the titrations have been performed with the NaHS and it is a source for H_2S in aqueous solution. NaHS and Na₂S are the familiar donors for the instantaneous generation of H₂S. Potassium carbonate, Potassium Bromide (IR Spectroscopy), L-Cysteine, Glutathione and Silica Gel (mesh 100-200) were purchased from Loba Chemie Pvt. Ltd. DAF-FM Diacetate NO detection Kit was purchased from Thermo Fischer Scientific. 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) was purchased from Avanti Polar Lipids. All the solvents purchased were of analytical grade and used without further purification.

2. Instrumentation Methods

¹H-NMR spectra were performed on Bruker Advance 500 MHz at room temperature using CD₃CN as solvent. Chemical shift values are reported in ppm values using TMS as an internal reference. Waters Q-Tof mass spectrometer was used to record ESI-mass spectrum using positive ion mode. An Evolution 201 UV-Vis spectrophotometer was used to record UV absorption spectra with quartz cells of 1.0 cm path length. For the preparation of vesicles, Mini-Extruder set from Avanti Polar Lipids was used. To record the fluorescence spectra, Cary Eclipse fluorescence spectrophotometer

was used. A zeta sizer Nano ZS instrument equipped with a He-Ne laser in backscattering mode at a scattering angle of 173° was employed for the DLS experiments. SHIMADZU Infrared spectrophotometer was used for performing FT-IR experiments using KBr pellet method.

3.1 Synthesis of $[C_{18}$ -Terpy-Ru $(Cl_2)NO](PF6)$ (1.NO)

According to the procedure reported in our previous work¹, ligand **1** was synthesized. 300 mg of ligand **1** (0.519 mmol) was refluxed in 40 ml solution of EtOH-H₂O (3:1) mixture. 464 mg of KCl (6.228 mmol) and 242 mg of K₂[RuCl₅(NO)] (0.6228 mmol) were added upon dissolving to the solution of **1**. The reaction was allowed to reflux for another 4 h. Upon cooling the reaction mixture was completely dried using rota-evaporator. The solid crude was then dissolved in methanol to remove any unreacted KCl and K₂[RuCl₅(NO)]. To the filtrate, aqueous solution of excess NH₄PF₆ was added and dried again using rota-evaporator. The precipitates were suspended in water and stirred to dissolve excess NH₄PF₆ salt. It was filtered using glass crucible (G4 sintered) to get orangish-brown solid, washed with water and diethyl ether to obtain the expected product **1.NO**. The pure final product was obtained by recrystallization using CH₃CN-diethyl ether mixture using diffusion method. Yield: (240 mg, 46%), IR (KBr): ν_{max} (cm⁻¹) 1897 (N-O). ¹H-NMR (CD₃CN, 500 MHz): δ (ppm) 8.79 (dd, J = 5.6 Hz, 0.9 Hz, 2H), 8.70 (s, 2H), 8.69-8.64 (m, 2H), 8.42 (td, J = 7.9 Hz, 1.4 Hz, 2H), 8.09 (d, J = 8.9 Hz, 2H), 7.91-7.87 (m, 2H), 7.23 (d, J = 8.9 Hz, 2H), 4.17 (t, J = 6.6 Hz, 2H), 1.87-1.82 (m, 2H), 1.54-1.49 (m, 2H), 1.30 (s, 28H),

0.90 (t, J = 5.3 Hz, 3H). ESI-MS: *m*/*z* [M-PF₆]⁺ : calcd. 779.83, found 779.27, HR-MS: *m*/*z* [M-PF₆]⁺ : calcd. 779.2433, found 779.2422.

3.2 Preparation of nanoscale vesicles using 1.NO and DOPC

5 mol % of the **1.NO** complex and DOPC lipid was used to prepare the unilamellar vesicles by thin-film hydration method using mini-extruder set purchased from Avanti Polar Lipids. For the preparation of vesicles, 5 µmol solution of DOPC lipid in chloroform was taken and 0.5 µmol solution of **1.NO** in CHCl₃ was added to it. A thin lipid film was formed upon drying the organic solvent. 5 mL of HPLC grade water was added to the thin film and sonicated for 90 minutes at 60°C to obtain multilamellar lipid suspension. A polycarbonate membrane with a pore size of 0.1 µm was used to homogenize the multilamellar lipid solution by extrusion using the Avanti Polar Lipid Extrusion Set. The orangish-colored vesicles solution was considered to be free of impurities and used without any further treatment. The prepared vesicles **Lip-1.NO** were used within a week and stored at 20°C.

3.3 Study of NO release from 1.NO by UV-Vis spectroscopy

5% CH₃CN-H₂O solution of **1.NO** (24 × 10⁻⁶ M, 2 mL) was used for recording the UV-Vis absorption spectra. Each spectrum was recorded after irradiating with light (λ = 410 nm, 3W) for 60 min. The quartz cuvette used was of 1.0 cm path length. A distance of 4 cm was maintained between the light source and the quartz cuvette for the irradiation experiments. The changes in the absorbance at 492 nm were monitored against time.

3.4 DAF-FM DA assay of 1.NO and Lip-1.NO

A non-fluorescent probe DAF-FM DA is used to qualitatively detect the NO release from **1.NO**. DAF-FM DA probe (10 μ M) in DMSO was added to the 5% CH₃CN-H₂O solution of **1.NO** (26 μ M) and in buffer solution of **Lip-1.NO** (HEPES, 10 mM, pH=7.4), respectively. With the gradual addition of analyte H₂S (0-2 mM), changes in emission intensity were recorded. The increase in fluorescence intensity at 515 nm was monitored to confirm the H₂S induced release of NO from **1.NO**.

Figure S1: Changes in UV-Vis absorption spectra observed for **1.NO** (26 μ M) in 5% CH₃CN-H₂O when irradiated with Blue light. Repetitive scans were taken at different time intervals for 80 mins. *Inset*: Time dependent change in absorption spectra.

Figure S2: Blank DAF-FM DA assay with H₂S (2mM).

Figure S3: FT-IR assay of 1.NO with the thiols.

Figure S4: ESI-Mass (+ve mode) spectrum of (a) **1.NO**, (b) upon addition of 1 eqv H_2S and (c) 3 eqv H_2S in CH_3CN -water mixture.

Figure S5: FT-IR spectrum of Lip-1.NO

Figure S6: HR-TEM image of Lip-1.NO²

Figure S7: The absorption spectra of **Lip-1.NO** (24 μ M) with different concentrations of H₂S (0–165 μ M).

Scheme S1: Formation various possible by products upon interaction of **1.NO** with H₂S predicted by mass analysis.

Reference:

- 1. N. Sharma, P. Arjunan, S. Marepally, N. Jain, A. R. Naziruddin, A. Ghosh, C. R. Mariappan and D. A. Jose, *J. Photochem. Photobiol. A: Chem*, 2022, **425**, 113703.
- 2. The detailed characterization of **Lip-1.NO** is described by us elsewhere in an another work published in N. Sharma, D. A. Jose, N. Jain, S. Parmar, A. Srivastav, J. Chawla, A. R. Naziruddin and C. R. Mariappan, *Langmuir*, 2022, 44, 13602–13612