Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Table of Contents

Sr. No	Title	Page No.
Table S1	Selected Bond Distances (Å) and Bond angles (°) for 1	4
Table S2	Selected Bond Distances (Å) and Bond angles (°) for 2	4
Table S3	Continuous Shape Measures calculation for the Dy ^{III} ions in 1-3	5
Table S4	Comparison of Bond Angle and Bond Length of different Dy ₂ complexes Bond length and Bond angle of homonuclear Ln Complex.	5
Table S5.	Selected Bond Distances (Å) and Bond angles (°) for 3	7
Table S6	Some notable examples of oxygen atom bridged groups of Dysprosium complex having SMM Properties	10
Table S7.	Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for complex 2 in the temperature range 2-12 K.	16
Table S8.	Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for complex 3 in the temperature range 2-12 K.	17
Table S9.	Calculated energy spectrum, g tensors, and the Φ and θ angles computed for complex 1.	18
Table S10.	Calculated energy spectrum, g tensors, and the Φ and θ angles computed for complex 2	19
Table S11.	Calculated energy spectrum, g tensors, and the Φ and θ angles computed for complex 3 .	20
Table S12.	SINGLE_ANISO computed crystal field parameters for the Dy^{III} in complex 1	22
Table S13.	SINGLE_ANISO computed crystal field parameters for the Dy^{III} in complex 2.	24
Table S14.	SINGLE_ANISO computed crystal field parameters for the Dy^{III} in complex 3 .	25
Table S15.	CASSCF computed LoProp charges per central atom and first coordination sphere ligand atoms in the ground state of complexes 1-3.	27
Table S16.	BS-DFT computed energies of high-spin and broken-symmetry solution of complex 1 using $H=-2JS_1S_2$ formalism.	28

Table S17.	BS-DFT computed energies of high-spin and broken-symmetry solution of complex 2 using $H=-2JS_1S_2$ formalism.	29
Table S18.	BS-DFT computed energies of high-spin and broken-symmetry solution of complex 3 using $H=-2JS_1S_2$ formalism.	30
Table S19.	Energies (cm ⁻¹), corresponding tunnel splitting (Δ_{tun}) and g tensors of the low-lying exchange doublet state in complex 1-3 .	31
Table S20.	SINGLE_ANISO computed wave function decomposition analysis for Dy1 centre and Dy2 centre in complex 1. The major dominating values are kept in bold.	32
Table S21.	SINGLE_ANISO computed wave function decomposition analysis for Dy1 centre and Dy2 centre in complex 2 . The major dominating values are kept in bold.	34
Table S22.	SINGLE_ANISO computed wave function decomposition analysis for Dy1 centre and Dy2 centre in complex 3 . The major dominating values are kept in bold.	37
Table S23	Crystal data and structure refinement details of 1 to 3.	38
Figure S1	Distorted Trigonal Dodecahedron Geometry	9
Figure S2	Supramolecular one-dimensional Zigzag Chain for 1	10
Figure S3	Supramolecular Interaction C-H····F and C-H···· π interactions for 2	11
Figure S4	Supramolecular interaction for 3 .	11
Figure S5	Experimental PXRD patterns and simulated patterns generated from single crystal X-ray diffraction data for complexes 1 (a), 2 (b) and 3 (c).	12
Figure S6	TGA of complexes 1, 2 and 3.	12
FigureS7	Temperature dependence of the magnetization of 1 at different fields	13
FigureS8	Temperature dependence of the magnetization of 2 at different fields.	13
Figure S9	Temperature dependence of the magnetization of 3 at different fields.	14
FigureS10	Temperature dependence of the in-phase (left) and out-of-phase (right) ac susceptibility at the indicated frequency range ranges for complexes 1–3 respectively under the zero field. Plots a and b for 1, plots c and d for 2,	15

	plots e and f for 3 respectively.	
Figure S11	Plots of $\ln(\chi''/\chi')$ versus 1/T for 1. The solid line represents the fitting results	16
Figure S12	<i>Ab initio</i> SINGLE_ANISO computed magnetization blockade barrier for Dy(1a) based mononuclear fragments of complexes a) 1 and b) 2 [Relaxation mechanisms out of Dy(1b) based fragments of the respective complexes resemble exactly to the corresponding Dy(1a) congeners].	21
Figure S13	<i>Ab initio</i> SINGLE_ANISOcomputed magnetization blockade barrier for a) $Dy(1a)$ and b) $Dy(1b)$ based mononuclear fragments of 3 .	21
Figure S14	CASSCF computed LoProp charges on the Dy and first coordination sphere ligated atoms in complex 1 .	26
Figure S15	CASSCF computed LoProp charges on the Dy and first coordination sphere ligated atoms in complex 2 .	26
Figure S16	CASSCF computed LoProp charges on the Dy and first coordination sphere ligated atoms in complex 3	27
Scheme S1	Exchange model employed model Dy-Dy series (1-3)	31
Figure S17	DFT calculated spin-density plot for the ground state (S=0) of complex 1 (a) HS and (b) BS; the positive and negative spin densities are represented by orange and purple colour, respectively. The isodensity surface represented here corresponds to a value of 0.001 e^{-1} bohr ³ .	33
Figure S18	DFT calculated spin-density plot for the ground state (S=0) of complex 2 (a) HS and (b) BS; the positive and negative spin densities are represented by orange and purple colour, respectively. The isodensity surface represented here corresponds to a value of 0.001 e ^{-/} bohr ³ .	34
Figure S19	DFT calculated spin-density plot for the ground state (S=0) of complex 3 (a) HS and (b) BS; the positive and negative spin densities are represented by orange and purple colour, respectively. The isodensity surface represented here corresponds to a value of $0.001 \text{ e}^-/\text{ bohr}^3$.	34
Figure S20	DFT calculated overlap integrals for complex 1. The isodensity surface represented here corresponds to a value of 0.03 e^{-1} bohr ³ .	35
Figure S21	DFT calculated overlap integrals for complex 2. The isodensity surface represented here corresponds to a value of 0.03 e^{-1} bohr ³ .	36
Figure S22	DFT calculated overlap integrals for complex 3. The isodensity surface	37

represented here corresponds to a value of 0.02 s^{-1} here	
represented here corresponds to a value of 0.05 e / bonr ² .	

 Table S1. Selected Bond Distances (Å) and Bond angles (°) for 1

Bond Lengths around Dy		Bond Angle
Dy1- Dy1a	3.7618(4)	Dy1 -O1- Dy1a 107.61(10)
Dy1- O1	2.309(3)	N1a-Dy1- N2a 64.86(12)
Dy1-O1a	2.352(3)	O4-Dy1-O5 70.885(106)
Dy1- O2	2.348(3)	O3a-Dy1a-O2a 70.578(106)
Dy1- O3	2.364(3)	
Dy1- O4	2.353(3)	
Dy1- O5	2.360(3)	

'a'atoms are generated by the symmetry operation: (1-x,1-y,1-z)

 Table S2.
 Selected Bond Distances (Å) and Bond angles (°) for 2

Bond Lengths around Dy		Bond Angle		
	Dy1- Dy1a	3.7721(8)	Dy1- O1- Dy1a	107.20(10)
	Dy1- O1	2.320(3)	N1a- Dy1- N2a	64.61(11)
	Dy1- O1a	2.366(3)	O5-Dy1-O4	71.701(100)
	Dy1- O2	2.345(3)	O2a-Dy1-O3a	71.639(101)
	Dy1- O3	2.336(3)		
	Dy1- O4	2.342(3)		
	Dy1- O5	2.351(3)		
	1		1	

'a'atoms are generated by the symmetry operation: (1-x,1-y,1-z)

	Complex 1												
Sites	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY	JBTPR	BTPR-	JSD-8	TT-8	ETBPY-
								-8	-8	8			8
Dy1	32.310	25.081	16.991	10.495	3.177	0.505	13.827	30.798	3.357	2.564	3.034	11.318	25.171
Dy2	32.310	25.081	16.991	10.495	3.177	0.505	13.827	30.798	3.357	2.564	3.034	11.318	25.171
	Complex 2												
Sites	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY	JBTPR	BTPR-	JSD-8	TT-8	ETBPY-
								-8	-8	8			8
Dy1	31.928	24.477	17.093	10.404	2.703	0.544	13.469	30.647	3.091	2.331	3.020	11.256	24.683
Dy2	31.928	24.477	17.093	10.404	2.703	0.544	13.469	30.647	3.091	2.331	3.020	11.256	24.683
						Com	plex 3						
Sites	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY	JBTPR	BTPR-	JSD-8	TT-8	ETBPY-
								-8	-8	8			8
Dy1	33.942	20.717	16.208	12.533	4.076	1.973	12.822	26.898	3.537	2.938	4.034	12.946	22.631
Dy2	33.030	23.602	15.826	12.667	3.717	1.324	11.786	27.384	2.845	2.174	2.958	13.193	24.249

Table S3. Continuous Shape Measurements for the Dy^{III} ions in 1-3.

Table S4. Comparison of Bond Angle and Bond Length of Different Dy₂ Complexes.

Metal Complexes	Dy- O _{phenoxy} (Å)	Dy-N _{imine} (Å)	Dy-Dy (Å)	Dy-O _{phenoxy-} Dy(⁰)	Ref
[Dy ^{III} ₂ (valdien ₎₂ (NO ₃) ₂] ^a	2.31-2.33	2.50- 2.52	3.76	108.22	1
$[Dy_2(tfa)_4L_2]^{b}$	2.30-2.37	2.66- 2.45	3.81	108.72	2
$[Dy_2((L)_2] \cdot 2CH_3CN^c$	2.24-2.33	2.49- 2.75	3.89	110.4	3
$[Dy_2(MeOH)_2(HL_1)_2(NO_3)_2] \cdot 2MeOH^d$	2.24	2.46	3.70	110.72	4
$[Dy_2(L)_2(DBM)_2(DMA)_2]$ • 2DMA • 2CH ₃ CN °	2.34	2.48	3.75	105.52	5
$\begin{array}{c} Dy_2(ovph_{)2}(NO_3)_2(H_2O)_2]_3\\ 2H_2O^{\rm \ f} \end{array}$	2.17	2.45	3.82	110.12	6
[Dy ^{III} 2(Hhmb) ₃ (NCS ₎₃]·2MeOH· py, ^g	2.29-2.43	2.54	3.56	96.1	7
[Dy ₂ (LH) ₂ (µ2-Piv-к2	2.387	2.501	3.67	100.39	8

О,О')2(NO ₃ -к2 О,О')2] ^h					
$[Dy_2L_3](ClO_4)_3 \cdot 6CH_3OH^i$	2.30-2.32	2.56– 2.61	3.49	96.86	9
$[Dy_2(acac)_2(L)_2(EtOH)_2]^j$	2.20–2.40	2.41	3.97	113.01	10
$[Dy_2(L_1)_2(piv)_2]^k$	2.18-2.42	2.54- 2.36	3.78	110.19	11
[Dy ₂ (opch) ₂ (OAc) ₂ (H ₂ O) ₂]· MeOH ¹	2.14-2.41	2.47- 2.56	3.89	113.1	12
$[Dy(tfa)_2(L)]_2^m$	2.32-2.37	2.45 - 2.68	3.83	109.2	13
$[Dy(LH_3)Cl_2]_2 \cdot 2Et_2O^n$	2.28	2.45	3.68	105.51	14

Abbreviations:

a) H₂valdien = N1,N3-bis(3-methoxysalicylidene) diethylenetriamine),

b) HL = 2-[((4-bromophenyl)-imino)methyl]-8-hydroxyquinoline, tfa = trifluoroacetylacetonate

c) H₃L= N1,N2,N3,N4-tri(3-methoxysalicylidene) triethylenetetramine

d) $H_3L_1 = 3$ -(((2-hydroxynaphthaen-1-yl)methylene)amino)- propane-1,2-diol

e) H2L = 2-(2-hydroxy-3- methoxybenzylideneamino)phenol, HDBM = dibenzoylmethane, DMA = dimethylacetamide,

f) H_2 ovph = N'-(2-hydroxy-3-methoxybenzylidene)picolinohydrazide

g) H2hmb = N'-(2-hydroxy-3-methoxybenzylidene)benzhydrazide

h) LH2 = N'- (2-hydroxy-3-methoxybenzylidene)acetohydrazide

i) HL= 2,6-diformyl-4-methylphenol di(benzoylhydrazone

j) H2L = N'-(2-hydroxy-5-methylphenyl)-pyrazine-2-carbohydrazide, Hacac = acetylacetone

k) H₂L₁=N₁,N₃-bis(salicylaldehyde)diethylenetriamine

l) H₂opch=(E)-N'-(2-hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide

m) HL = 2-[[(4-methylphenyl)imino]methyl]-8-hydroxyquinoline

n) LH₄ = 2,3-dihydroxybenzylidene)-2-(hydroxyimino)propanehydrazide

Bond Lengths around Dy		Bond	l Angle
Dy1- Dy2	3.8422(6)	Dy1- O1- Dy2	109.16(19)
Dy1- O1	2.423(5)	Dy1- O6- Dy2	110.21(19)
Dy1- O6	2.333(5)	O2-Dy1-O3	71.892(221)
Dy1- O3	2.266(6)	O4-Dy2-O5	71.253(213)
Dy1- O4	2.359(7)		
Dy1- O5	2.285(6)		
Dy2- O1	2.291(5)		
Dy2- 06	2.351(5)		
Dy2- O8	2.277(5)		
Dy2- O7	2.253(5)		
Dy2- O9	2.438(6)		

Table S5. Selected Bond Distances (Å) and Bond angles (°) for ${\bf 3}$

Table S6. Table S6. Fitted exchange coupling constants, J^{exch} (cm⁻¹), for 1-3 and the Reported Phenoxido-Bridged Dy₂ Complexes

Dy ₂ Complex	Dy-Dy	<dy-o-dy< th=""><th>J exchange</th><th>U_{eff}/K and</th><th>ref</th></dy-o-dy<>	J exchange	U _{eff} /K and	ref
	(A ⁰)	(°)		Relaxation time $(\tau_0)/s$	
[Dy ₂ (a'povh) ₂ (OAc) ₂ (DMF) ₂] ^a	3.67	102.62	-8.375	$\begin{array}{c} 322.1 \text{ K}, \\ \tau_0 \!\!= 3.4 \times 10^{-9} \end{array}$	15
$[Dy_2(nb)_4(H_3L)_2]^b$	3.69	105.24	-2.75	290.1 K, $\tau_0 = 5.54 \times 10^{-12}$	16
$[Dy_2(Pc)_2(L-OCH_3)_2(H_2O)] \cdot 2THF^c$	3.93	106.4	-1.23	58.8K, $\tau_0 = 1.12 \times 10^{-8}$	17
$[Dy_2(L)_2(NO_3)_2(MeOH)_2]^d$	3.72	106.4	-6.00	97.42 K,	18

				$\tau_0 = 2.80 \times 10^{-5}$	
[Dy ₂ (LH ₁) ₂ (tfa) ₄]	3.77	107.198	-0.12	21.63 K,	This work
				$ au_0 = 7.32 imes 10^{-6}$	
[Dy ₂ (LH ₁) ₂ (hfac) ₄]	3.76	107.602	-0.20	9.04 K,	This work
				$\tau_0 = 3.19 \times 10^{-6}$	
[Dy ₂ (valdien) ₂ (NO ₃) ₂] ^e	3.76	108.22	-0.21	76 K,	1
				$\tau_0\!=\!6.04\times 10^{-7}$	
$[Dy_2L(O_2CPh)_2]$ ·2MeOH ^f	3.79	108.44°	-1.25	47.51 K,	19
				$\tau_0 = 6.42 \times 10^{-6}$	
$Dy_2(dbm)_2(LH)_2] \cdot H_2O^g$	3.80	109.5	9.49	76.18 K,	20
				$\tau_0\!=\!2.54\times 10^{-8}$	
$[Dy_2(L^1)_2(piv)_2]^h$	3.79	110.19	-1.50	40.32 K,	11
				$\tau_0 = 3.06 \times 10^{-6}$	
[Dy ₂ (LH1) ₂ (NO ₃)(tmhd) ₃]	2.38	110.25	-0.09	25.65 K,	This
				$ au_0 = 4.86 imes 10^{-5}$	
[Dy(acac) ₂ (CH ₃ OH)] ₂ (µ-HMq) ₂ ⁱ	3.92	112.71	-0.75	65.3 K,	21
				$\tau_0 = 6.3 \times 10^{-8}$	
[Dy ₂ (DMOP) ₂ (DBM) ₄ (C ₂ H ₄ Cl ₂) ₂] ^j	3.84	113.32	-2.51	147.2 K,	22
				$\tau_0 = 2.3 \times 10^{-8}$	

Abbreviations:

- a) H₂a'povh=N'-[amino(pyrimidin-2-yl)methylene]-o-vanilloyl hydrazine)
- b) H₃L =2-hydroxyimino-N'-[(2-hydroxy- 3-methoxyphenyl)methylidene] propanohydrazone Hnb = m-nitrobenzoic acid
- c) $H_2Pc = Phthalocyanine, HL-OCH_3 = 2-hydroxy-3-methoxybenzaldehyde$
- d) $H_2L = 2-(((2-hydroxy-3-methoxybenzyl)imino)methyl)-4-methoxyphenol$
- e) H_2 valdien = NI, N3-bis(3-methoxysalicylidene)diethylenetriamine)
- f) $H_2L=N_1,N_3$ -bis(4-chlorosalicyladehyde)diethylenetriamine
- g) $LH_3 = (1E, 3E)-2$ -hydroxy-5-methylisophthalaldehyde dioxime, Hdbm = dibenzoylmethane
- h) $H_2L_1=N_1,N_3$ -bis(salicylaldehyde)diethylenetriamine
- i) HMq = 2-methyl-8-hydroxyquinoline, acac = acetylacetone
- j) DMOP = 2,6-dimethoxyphenol, DBM = dibenzoylmethane

Figure S1. Distorted Trigonal Dodecahedron Geometry

Figure S2. Supramolecular one-dimensional Zigzag Chain for 1

Figure S3. Supramolecular Interaction C-H····F and C-H···· π interactions for 2

Figure S4. Supramolecular interaction for 3.

Figure S5. Experimental PXRD patterns and simulated patterns generated from single crystal X-ray diffraction data for complexes 1(a), 2 (b) and 3 (c).

Complex 1

Complex 2

Complex 3

Figure S6. TGA of complexes 1, 2 and 3.

Figure S7. Temperature dependence of the magnetization of 1 at different fields.

Figure S8. Temperature dependence of the magnetization of 2 at different fields.

Figure S9. Temperature dependence of the magnetization of 3 at different fields.

Figure S10. Temperature dependence of the in-phase (left) and out-of-phase (right) ac susceptibilities at the indicated frequency range for complexes 1–3 respectively under the zero field. Plots a and b for 1, plots c and d for 2, plots e and f for 3 respectively.

Figure S11. Plots of $ln(\chi''/\chi')$ versus 1/T for 1. The solid line represents the fitting results.

Table S7. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for complex **2** in the temperature range 2-12 K.

T / K	$\chi_{s/\text{ cm}^3 \text{ mol}^{-1}}$	$\chi_T / \mathrm{cm}^3 \mathrm{mol}^{-1}$	τ/s	α	Residual
2	0.350481E+00	0.665958E+01	0.128883E-02	0.163959E+00	0.607703E-01
3	0.280499E+00	0.630014E+01	0.891005E-03	0.166752E+00	0.107417E+00
4	0.394313E+00	0.606689E+01	0.163415E-02	0.162261E+00	0.517652E-01
5	0.168174E+00	0.572827E+01	0.549796E-03	0.195841E+00	0.125834E+00
6	0.861614E-01	0.520035E+01	0.317335E-03	0.224695E+00	0.184454E+00
7	0.973595E-08	0.479211E+01	0.172517E-03	0.329566E+00	0.885052E+00
8	0.720337E+00	0.429516E+01	0.152362E-03	0.182583E+00	0.111876E+00
9	0.109531E+01	0.392707E+01	0.118928E-03	0.125894E+00	0.364341E-01
10	0.131191E+01	0.361159E+01	0.884013E-04	0.777668E-01	0.860003E-02
11	0.998760E-08	0.343371E+01	0.117237E-04	0.423714E+00	0.600370E+00
12	0.389307E+00	0.311832E+01	0.212144E-04	0.103405E+00	0.896909E-02

Table S8 . Best fitted parameters (χ_T , χ_S ,	τ and α) with the extended Debye model for complex 3
in the temperature range 2-12 K.	

T / K	$\chi_{s/cm^3 mol^{-1}}$	$\chi_T / \mathrm{cm}^3 \mathrm{mol}^{-1}$	τ / s	α	Residual
2	0.182473E+00	0.373421E+01	0.120052E-01	0.217182E+00	0.528326E-01
3	0.213776E+00	0.370381E+01	0.167642E-01	0.246978E+00	0.675996E-01
4	0.161974E+00	0.341734E+01	0.793087E-02	0.196216E+00	0.385585E-01
5	0.142261E+00	0.303111E+01	0.492711E-02	0.183860E+00	0.244681E-01
6	0.127306E+00	0.270785E+01	0.301886E-02	0.180590E+00	0.226791E-01
7	0.117925E+00	0.243810E+01	0.187997E-02	0.187323E+00	0.263958E-01
8	0.130859E+00	0.221769E+01	0.121461E-02	0.191449E+00	0.332745E-01
9	0.172797E+00	0.202096E+01	0.830336E-03	0.180391E+00	0.314681E-01
10	0.329506E-14	0.361752E+01	0.286170E-01	0.775504E+00	0.541527E+01
11	0.254338E+00	0.171447E+01	0.429667E-03	0.144991E+00	0.199198E-01
12	0.189065E-07	0.222463E+01	0.504246E-03	0.752444E+00	0.293394E+01

Computational Details

All the calculations were carried out on the X-ray crystal structure using the MOLCAS 8.0 suite of programs.²³ In order to compute the magnetic property of individual Dy centres, the neighboring Dy ions were replaced by a diamagnetic closed-shell Lu³⁺. CASSCF/RASSCF, CASPT2, and multistate CASPT2 were performed to extract the Spin Hamiltonian parameters in the complexes.²⁴⁻²⁸ All the calculations were performed using an ANO-RCC type basis set²⁹. The following contractions were used :

Dy/Lu......7s6p4d2f.

C, N, O, F..... 3s2p.

H.....2s.

The electronic configuration of Dy(III) is 4f⁹, which possesses a ground state term of ${}^{6}\text{H}_{15/2}$. The active space include 4f shell of Dy³⁺ ion: CAS (9,7), i.e., nine electrons in the seven f-orbitals of

Dy(III). We have computated 21 Spin Free roots of sextate using this active space then we have computed 126 roots of Spin Orbit states by introducing RASSI-SO module³⁰. To better understanding of g-tensor orientation, LoProp charges were also computed. In the next step, we took these spin-orbit states in the SINGLE_ANISO module of MOLCAS³⁰ to compute the g-values, crystal field parameters, wavefunction decomposition analysis, and transition magnetic moments of individual Dy(III) ions. Using the SINGLE_ANISO module, we computed the g-tensor associated with eight low-lying KDs for the three complexes. Using the SINGLE_ANISO code, we computed the CF parameters and constructed the ab initio blockade barrier by computing the transversal magnetic moment between each KDs to analyse the nature of magnetic relaxation.

The Cholesky decomposition for two-electron integrals was adapted to reduce the storage efficiency. The exchange spectrum (dipolar and exchange contributions), along with the magnetic properties of the dinuclear compound, was simulated using POLY_ANISO code based on obtained results from the ab initio calculations. The POLY_ANISO code has been successfully used to simulate the magnetic properties of highly anisotropic polynuclear complexes.³¹⁻³⁵

Table S9. Calculated energy spectrum, g tensors, and the Φ and θ angles computed for complex **1**. Here Dy(1a) and Dy(1b) represent the two different Dy(III) sites present in complex **1**. The Φ and θ angles are described in Scheme 3.

Dy ions	Kramers doublet	Energy (cm ⁻¹)	g _x	gy	gz	Φ (°)	θ (°)
Dy(1a)	1	0.0	0.247	0.777	16.660		62.5
Dy(1b)	1	0.0	0.246	0.777	16.680	-	117.3

Dy(1a)	2	29.7	0.049	0.807	15.225	141.7	79.8
Dy(1b)	2	29.7	0.047	0.804	15.233	141.8	100.8
Dy(1a)	3	79.0	1.452	4.268	15.139	106.8	76.7
Dy(1b)	3	79.0	1.450	4.272	15.150	97.4	144.1
Dy(1a)	4	110.9	9.477	5.910	1.995	100.9	91.3
Dy(1b)	4	110.9	9.499	5.912	2.002	100.9	88.7
Dy(1a)	5	144.9	7.899	5.663	0.906	78.8	80.2
Dy(1b)	5	144.9	7.913	5.656	0.911	78.8	99.8
Dy(1a)	6	159.2	2.546	5.172	12.521	25.5	56.1
Dy(1b)	6	159.2	2.542	5.179	12.542	25.5	123.9
Dy(1a)	7	329.6	0.132	0.457	17.795	53.7	50.9
Dy(1b)	7	329.6	0.130	0.459	17.804	53.7	129.0
Dy(1a)	8	348.9	0.100	0.581	18.043	56.2	49.4
Dy(1b)	8	348.9	0.098	0.580	18.065	56.2	130.7

Table S10. Calculated energy spectrum, g tensors, and the Φ and θ angles computed for complex **2**. Here Dy(1a) and Dy(1b) represent the two different Dy(III) sites present in complex **2**. The Φ and θ angles are described in Scheme 3.

Dy ions	Kramers doublet	Energy (cm ⁻¹)	g _x	\mathbf{g}_{y}	gz	Φ (°)	θ (°)
Dy(1a)	1	0.0	0.489	1.446	18.366		111.9
Dy(1b)	1	0.0	0.489	1.444	18.333	-	68.1
Dy(1a)	2	42.8	3.031	4.587	11.362	29.2	102.2
Dy(1b)	2	42.8	3.024	4.586	11.340	29.2	77.9
Dy(1a)	3	75.7	2.400	4.597	10.759	68.1	168.1
Dy(1b)	3	75.7	2.402	4.587	10.762	68.1	12.0
Dy(1a)	4	110.6	0.418	1.779	13.564	91.9	155.3
Dy(1b)	4	110.6	0.416	1.770	13.564	91.8	24.6

Dy(1a)	5	131.0	0.820	1.280	12.126	87.4	154.9
Dy(1b)	5	131.0	0.811	1.280	12.123	87.4	25.1
Dy(1a)	6	200.3	0.131	0.209	16.445	57.8	67.6
Dy(1b)	6	200.3	0.131	0.208	16.416	57.9	112.5
Dy(1a)	7	301.6	0.001	0.087	19.048	106.2	135.0
Dy(1b)	7	301.6	0.001	0.086	19.047	106.1	45.0
Dy(1a)	8	367.2	0.018	0.067	19.387	74.0	129.7
Dy(1b)	8	367.2	0.018	0.067	19.368	73.9	50.3

Table S11. Calculated energy spectrum, g tensors, and the Φ and θ angles computed for complex **3**. Here Dy3(a) and Dy3(b) represent the two different Dy(III) sites present in complex **3**. The Φ and θ angles are described in Scheme 3.

Dy ions	Kramers doublet	Energy (cm ⁻¹)	g _x	$\mathbf{g}_{\mathbf{y}}$	gz	Φ (°)	θ (°)
Dy(1a)	1	0.0	0.091	0.185	19.369		53.4
Dy(1b)	1	0.0	0.068	0.150	19.428	-	88.6
Dy(1a)	2	41.8	1.307	2.141	15.498	28.4	33.0
Dy(1b)	2	149.9	1.504	3.364	14.543	17.4	95.1
Dy(1a)	3	82.0	1.225	4.216	11.952	69.2	40.4
Dy(1b)	3	226.4	4.104	5.733	8.312	71.1	111.3
Dy(1a)	4	151.1	2.331	3.701	9.261	36.4	46.0
Dy(1b)	4	301.8	0.765	2.485	10.528	99.2	168.2
Dy(1a)	5	203.3	1.108	1.892	14.760	55.9	55.4
Dy(1b)	5	353.4	0.843	0.907	16.060	89.2	177.7
Dy(1a)	6	227.1	1.725	3.357	9.766	74.8	62.30
Dy(1b)	6	440.2	0.043	0.343	18.504	65.7	32.2
Dy(1a)	7	272.4	1.637	4.972	14.299	60.2	89.7
Dy(1b)	7	462.34	0.017	0.245	17.404	84.7	112.9

Dy(1a)	8	399.8	0.071	0.162	19.484	78.0	127.6
Dy(1b)	8	554.7	0.043	0.088	19.078	62.6	142.4

Figure S12. SINGLE_ANISO computed magnetization blockade barrier for a) complex 1 and b) 2. Here we have shown only one relaxation for only one centre as Dy1(b)/Dy2(b) relaxes in similar pattern due to centrosymmetric environment.

Figure S13. SINGLE_ANISO computed magnetization blockade barrier for a) Dy3(a) and b) Dy3(b) based mononuclear fragments of **3**.

k	q	B_k^q	B_k^q
		Dy1(a)	Dy1(b)
2	-2	2.42E-02	1.62E-02
	-1	-2.50E+00	-2.51E+00
	0	-4.40E-01	-4.41E-01
	1	-1.54E-01	-1.58E-01
	2	1.79E+00	1.79E+00
4	-4	-3.70E-05	-8.08E-05
	-3	-7.28E-02	-7.26E-02
	-2	1.05E-04	-2.11E-07
	-1	3.04E-02	3.05E-02
	0	-3.45E-03	-3.44E-03
	1	4.52E-03	4.65E-03
	2	1.32E-02	1.31E-02
	3	3.94E-03	3.40E-03
	4	-8.14E-03	-8.20E-03
6	-6	-1.54E-06	-2.36E-06
	-5	-1.24E-04	-1.19E-04
	-4	-3.57E-06	-4.58E-06
	-3	3.11E-05	3.43E-05
	-2	-9.76E-06	-9.00E-06
	-1	2.62E-04	2.62E-04
	0	2.46E-05	2.48E-05
	1	-6.28E-05	-6.36E-05
	2	-1.44E-04	-1.43E-04
	3	4.32E-05	3.96E-05
	4	-4.35E-05	-4.43E-05

Table S12. SINGLE_ANISO computed crystal field parameters for Dy^{III} in complex 1.

5	3.98E-05	3.70E-05
6	-1.07E-05	-1.05E-05

 Table S13. SINGLE_ANISO computed crystal field parameters for the Dy^{III} in complex 2.

k	q	B_k^q	B_k^q
		Dy2(a)	Dy2(b)
2	-2	5.93E-01	5.96E-01
	-1	-1.44E+00	-1.43E+00
	0	-1.09E+00	-1.09E+00
	1	2.46E-01	2.37E-01
	2	6.97E-01	6.86E-01
4	-4	-1.27E-02	-1.28E-02
	-3	-5.13E-02	-5.07E-02
	-2	3.06E-03	3.10E-03
	-1	1.70E-02	1.72E-02
	0	-1.28E-03	-1.29E-03
	1	1.25E-02	1.23E-02
	2	6.65E-03	6.68E-03
	3	-1.85E-02	-1.84E-02
	4	-3.52E-02	-3.53E-02
6	-6	-2.07E-05	-2.03E-05
	-5	3.08E-04	3.12E-04
	-4	1.96E-04	1.97E-04
	-3	4.18E-04	4.12E-04
	-2	-2.77E-05	-2.88E-05
	-1	-1.17E-04	-1.17E-04
	0	-9.34E-07	-1.01E-06
	1	-1.42E-04	-1.45E-04
	2	-5.15E-06	-5.76E-06
	3	-8.84E-06	-1.85E-05
	4	-1.10E-04	-1.09E-04

	5	-1.68E-04	-1.86E-04
	6	5.89E-06	5.97E-06

Table S14. SINGLE_ANISO computed crystal field parameters for the Dy^{III} in complex 3.

k	q	B_k^q	B_k^q
		Dy3(a)	Dy3(b)
2	-2	-8.08E-02	-1.38E-01
	-1	1.29E+00	-7.26E-01
	0	-1.21E+00	-1.91E+00
	1	-1.05E+00	1.54E+00
	2	1.22E+00	2.53E+00
4	-4	-1.34E-02	1.01E-02
	-3	4.17E-02	2.24E-03
	-2	-9.76E-03	4.73E-03
	-1	-9.08E-03	4.05E-03
	0	-2.98E-03	-4.88E-03
	1	-7.44E-04	-7.03E-03
	2	-1.30E-02	2.62E-02
	3	-3.33E-02	1.07E-02
	4	2.43E-02	-1.30E-02
6	-6	-2.52E-04	2.82E-04
	-5	6.11E-06	2.57E-04
	-4	1.83E-04	-1.79E-05
	-3	1.82E-04	-8.00E-06
	-2	-2.23E-05	-1.67E-04
	-1	-4.30E-05	5.05E-05
	0	2.07E-05	-3.59E-06
	1	7.86E-05	2.54E-05

2	7.31E-05	1.47E-05
3	1.06E-04	1.31E-04
4	1.04E-04	1.59E-04
5	-4.08E-04	-8.79E-05
6	6.03E-05	2.37E-04

Figure S14. CASSCF computed LoProp charges on the Dy and first coordination sphere ligated atoms in complex **1**.

Figure S15. CASSCF computed LoProp charges on the Dy and first coordination sphere ligated atoms in complex **2**.

Figure S16. CASSCF computed LoProp charges on the Dy and first coordination sphere ligated atoms in complex 3.

Table S15. CASSCF computed LoProp charges per central atom and first coordination sphere

	Atoms	1	Atoms	2	Atoms	3	Atoms	3
	Dy(1a)/Dy(1b)	2.53	Dy(1a)/Dy(1b)	2.52	Dy(1a)		Dy(1b)	
	03	-0.60	01	-0.76	03	-0.56	01	-0.78
	04	-0.61	05	-0.73	06	-0.55	02	-0.81
Hard Plane	05	-0.62	N2	-0.36	05	-0.54	09	-0.75
atoms	06	-0.61	O6	-0.74			N4	-0.25
			N1	-0.34			N3	-0.25
Average		-0.61		-0.58		-0.55		-0.57
	01	-0.82	04	-0.64	01	-0.69	07	-0.79
Axial								

coordination	02	-0.81	03	-0.66	02	-0.82	08	-0.70
atoms	N1	-0.34	O2	-0.65	N2	-0.32	O10	-0.73
	N2	-0.36			04	-0.84		
					N1	-0.32		
Average		-0.58		-0.65		-0.60		-0.74

Table S16. SINGLE_ANISO computed wave function decomposition analysis for Dy1 and Dy2 centres in complex **1**. The major dominating values are kept in bold.

±mJ	wave function decomposition analysis Dy@1
KD1	37.63% ±13/2⟩ + 37.08% ±15/2⟩ + 16.29% ±9/2⟩
KD2	30.65% $ \pm 7/2\rangle + 21.97\% \pm 11/2\rangle + 16.97\% \pm 15/2\rangle + 12.08\% \pm 9/2\rangle$
KD3	48.33% ±1/2> + 19.68% ±3/2> + 16.06% ±5/2>
KD4	23.45% $ \pm 3/2\rangle + 22.15\% \pm 1/2\rangle + 15.25\% \pm 15/2\rangle + 12.57\% \pm 5/2\rangle + 10.08\% \pm 11/2\rangle$
KD5	33.49% ±3/2) + 20.05% ±13/2) + 12.74% ±5/2)
KD6	$\textbf{23.95\% \pm 13/2} + 19.26\% \pm 15/2\rangle + 18.06\% \pm 1/2\rangle + 16.96\% \pm 11/2\rangle + 14.80\% \pm 5/2\rangle$
KD7	34.27% ±7/2)+ 23.17% ±11/2) + 18.17% ±5/2) + 14.21% ±9/2)
KD8	41.39% ±9/2) + 22.09% ±7/2) + 13.74% ±5/2)
±mJ	wave function decomposition analysis Dy@2
KD1	38.00% ±13/2⟩ + 36.78% ±15/2⟩ + 16.15% ±9/2⟩
KD2	30.61% ±7/2> + 21.93% ±11/2> + 16.99% ±15/2> + 12.14% ±9/2>
KD3	48.20% ±1/2⟩ + 19.78% ±3/2⟩ + 16.07% ±5/2⟩
KD4	$\textbf{23.16\% \pm 3/2} + 22.40\% \pm 1/2\rangle + 15.39\% \pm 15/2\rangle + 12.58\% \pm 5/2\rangle + 10.02\% \pm 11/2\rangle$
KD5	33.72% ±3/2>+ 20.06% ±13/2> + 12.56% ±5/2>
KD6	$\textbf{23.65\% \pm 13/2} + 19.36\% \pm 15/2\rangle + 18.02\% \pm 1/2\rangle + 17.13\% \pm 11/2\rangle + 14.88\% \pm 5/2\rangle$
KD7	34.08% ±7/2)+ 23.24% ±11/2) + 18.33% ±5/2) + 14.21% ±9/2)
KD8	41.41% ±9/2>+ 22.36% ±7/2> + 13.67% ±5/2>

Table S17. SINGLE_ANISO computed wave function decomposition analysis for Dy1 centre and Dy2 centre in complex **2**. The major dominating values are kept in bold.

- $\pm mJ$ wave function decomposition analysis **Dy**(*a*)**1**
- KD1 84.47% $|\pm 15/2\rangle + 6.25\% |\pm 7/2\rangle$
- KD2 **46.20%** $|\pm 13/2\rangle + 18.41\% |\pm 5/2\rangle + 10.51\% |\pm 9/2\rangle$
- KD3 **24.46%** $|\pm 11/2\rangle + 17.35\% |\pm 13/2\rangle + 15.52\% |\pm 7/2\rangle + 13.02\% |\pm 3/2\rangle$
- KD4 **28.26%** $|\pm 1/2\rangle + 16.84\% |\pm 9/2\rangle + 16.07\% |\pm 11/2\rangle + 14.16\% |\pm 5/2\rangle + 10.74\% |\pm 3/2\rangle$
- KD5 **19.56%** $|\pm 7/2\rangle$ + 18.83% $|\pm 9/2\rangle$ + 18.21% $|\pm 3/2\rangle$ + 12.74% $|\pm 13/2\rangle$ + 11.64% $|\pm 11/2\rangle$ + 10.67% $|\pm 1/2\rangle$
- KD6 **27.48%** $|\pm 11/2\rangle + 18.90\% |\pm 9/2\rangle + 16.65\% |\pm 13/2\rangle + 13.03\% |\pm 7/2\rangle + 12.87\% |\pm 5/2\rangle$
- KD7 27.44% $|\pm 1/2\rangle$ + 18.18% $|\pm 3/2\rangle$ + 17.17% $|\pm 7/2\rangle$ + 15.28% $|\pm 5/2\rangle$ + 14.31% $|\pm 5/2\rangle$
- KD8 **25.70%** |±5/2}+ 25.65% |±3/2> + 17.41% |±7/2> + 17.33% |±1/2>
- ±*mJ* wave function decomposition analysis Dy@2
- KD1 84.47% $|\pm 15/2\rangle + 6.26\% |\pm 7/2\rangle$
- KD2 **46.16%** $|\pm 13/2\rangle + 18.40\% |\pm 5/2\rangle + 10.46\% |\pm 9/2\rangle$
- KD3 **24.33%** $|\pm 11/2\rangle + 17.33\% |\pm 13/2\rangle + 15.53\% |\pm 7/2\rangle + 12.91\% |\pm 3/2\rangle$
- KD4 **28.31%** $|\pm 1/2\rangle + 16.94\% |\pm 9/2\rangle + 16.02\% |\pm 11/2\rangle + 14.15\% |\pm 5/2\rangle + 10.70\% |\pm 3/2\rangle$
- KD5 **19.64%** |±7/2⟩+ 18.78% |±9/2⟩ + 18.35% |±3/2⟩ + 12.83% |±13/2⟩ + 11.58% |±11/2⟩ + 10.52% |±1/2⟩
- KD6 27.60% $|\pm 11/2\rangle + 18.79\% |\pm 9/2\rangle + 16.65\% |\pm 13/2\rangle + 13.05\% |\pm 7/2\rangle + 12.87\% |\pm 5/2\rangle$
- KD7 27.70% $|\pm 1/2\rangle$ + 18.07% $|\pm 3/2\rangle$ + 17.05% $|\pm 7/2\rangle$ + 15.14% $|\pm 5/2\rangle$ + 14.34% $|\pm 5/2\rangle$
- KD8 **25.79%** $|\pm 5/2\rangle + 25.68\% |\pm 3/2\rangle + 17.47\% |\pm 7/2\rangle + 17.14\% |\pm 1/2\rangle$

Table S18. SINGLE_ANISO computed wave function decomposition analysis for Dy1 centre and Dy2 centre in complex **3**. The major dominating values are kept in bold.

±mJ	wave function decomposition analysis Dy@1
KD1	91.73% ±15/2⟩ + 3.35% ±11/2⟩
KD2	66.13% ±13/2⟩ + 10.69% ±5/2⟩
KD3	29.23% $ \pm 1/2\rangle + 27.51\% \pm 3/2\rangle + 15.27\% \pm 13/2\rangle + 10.99\% \pm 11/2\rangle$
KD4	40.82% ±11/2 ⟩ + 24.13% ±1/2⟩
KD5	24.09% ±9/2>+ 16.98% ±11/2> + 15.14% ±5/2> + 14.82% ±3/2> + 12.52% ±7/2>
KD6	22.18% $ \pm 3/2\rangle$ + 19.45% $ \pm 7/2\rangle$ + 18.20% $ \pm 9/2\rangle$ + 16.49% $ \pm 5/2\rangle$ + 10.07% $ \pm 11/2\rangle$
KD7	31.09% ±7/2>+ 26.69% ±9/2> + 23.87% ±5/2>
KD8	22.03% $ \pm 1/2\rangle$ + 21.05% $ \pm 3/2\rangle$ + 19.96% $ \pm 5/2\rangle$ + 19.42% $ \pm 7/2\rangle$ + 12.20% $ \pm 9/2\rangle$
±mJ	wave function decomposition analysis Dy@2
KD1	91.28% ±15/2⟩ + 8.14% ±11/2⟩
KD2	60.90% ±13/2⟩ + 24.94% ±9/2⟩
KD3	29.90% ±7/2> + 18.37% ±11/2> + 14.99% ±13/2> + 12.80% ±3/2> + 10.56% ±5/2> + 10.15% ±3/2>
KD4	27.68% ±5/2 ⟩ + 27.13% ±11/2⟩ + 12.65% ±3/2⟩
KD5	37.44% ± 1/2⟩+ 23.21% ±3/2⟩ + 12.93% ±9/2⟩ + 11.11% ±11/2⟩
KD6	20.84% $ \pm 9/2\rangle$ + 19.67% $ \pm 7/2\rangle$ + 18.64% $ \pm 5/2\rangle$ + 14.44% $ \pm 3/2\rangle$ + 14.42% $ \pm 11/2\rangle$
KD7	36.18% ±1/2 ⟩+ 26.68% ±3/2⟩ + 10.76% ±5/2⟩ + 10.51% ±9/2⟩
KD8	28.29% ±7/2>+ 22.81% ±9/2> + 20.80% ±5/2> + 12.83% ±11/2>

Scheme S1. Exchange model employed model Dy-Dy series (1-3)

$$\hat{H}_{exch} = -J\hat{S}_{Dy}\hat{S}_{Dy}$$

The foregoing exchange matrix has been written on the basis of lowest spin-orbit multiplets on magnetic centres.

Table S19. BS-DFT computed energies of high-spin and broken-symmetry solution of complex M1 using $H = -2JS_1S_2$ formalism.

Solution	Energy (Eh)	ρ ^{Gd1}	$ ho^{Gd2}$	<\$ ^{**2} >	J (cm ⁻¹)	J value Rescaled to Dy ^{III} spin (= Jx25/49)
HS	-27593.884613148628	7.01	7.01	56.0109	-0.68	-0.34
BS1	-27593.884681936219	7.01	-7.01	7.0119		

J values are estimated using the following equation,

$$J = -\frac{E_{HS} - E_{BS}}{s_{HS}^2 - s_{BS}^2}$$

Table S20. BS-DFT computed energies of high-spin and broken-symmetry solution of complex M2 using $H=-2JS_1S_2$ formalism.

Solution	Energy (Eh)	ρ ^{Gd1}	$\mathbf{\rho}^{\mathrm{Gd2}}$	<s**2></s**2>	J (cm ⁻¹)	J value Rescaled to Dy ^{III} spin (= Jx25/49)
HS	- 26403.516547281051	7.01	7.01	56.0109	-0.66	-0.33
BS1	- 26403.516611767995	7.01	-7.01	7.0119		

J values are estimated using the following equation,

$$J = -\frac{E_{HS} - E_{BS}}{s_{HS}^2 - s_{BS}^2}$$

Table S21. BS-DFT computed energies of high-spin and broken-symmetry solution of complex M3 using $H=-2JS_1S_2$ formalism.

Solution	Energy (Eh)	ρ ^{Gd1}	ρ ^{Gd2}	<s**2></s**2>	J (cm ⁻¹)	J value Rescaled to Dy ^{III} spin (= Jx25/49)
HS	- 25854.682010876866	7.01	7.01	56.0120	-0.20	-0.10
BS1	- 25854.682033786190	7.01	-7.01	7.0121	0.20	

J values are estimated using the following equation,

$$I = -\frac{E_{HS} - E_{BS}}{s_{HS}^2 - s_{BS}^2}$$

Figure S17. DFT calculated spin-density plot for the ground state (S=0) of complex M1 (a) HS and (b) BS; the positive and negative spin densities are represented by orange and purple colour, respectively. The isodensity surface represented here corresponds to a value of 0.001 e^{-1} bohr³.

Figure S18. DFT calculated spin-density plot for the ground state (S=0) of complex M2 (a) HS and (b) BS; the positive and negative spin densities are represented by orange and purple colour, respectively. The isodensity surface represented here corresponds to a value of 0.001 e^{-1} bohr³.

Figure S19. DFT calculated spin-density plot for the ground state (S = 0) of complex M3 (a) HS and (b) BS; the positive and negative spin densities are represented by orange and purple colour, respectively. The isodensity surface represented here corresponds to a value of 0.001 e^{-1} bohr³.

Figure S20. DFT calculated overlap integrals for complex M1. The isodensity surface represented here corresponds to a value of 0.03 e^{-1} bohr³.

Figure S21. DFT calculated overlap integrals for complex M2. The isodensity surface represented here corresponds to a value of 0.03 e^{-1} bohr³.

Figure S22. DFT calculated overlap integrals for complex M3. The isodensity surface represented here corresponds to a value of 0.03 e^{-1} bohr³.

Table S22. Energies (cm⁻¹), corresponding tunnel splitting (Δ_{tun}) and g tensors of the low-lying exchange doublet state in complex 1-3.

Complex 1								
Energy of Exchange	Δ_{tun}/cm^{-1}	gz	Energy	Δ_{tun}/cm^{-1}	gz			
Doublet								
0.0000		0.024	31.87569	0.017	30.143			
0.0006	0.0006		31.89325					
2.1756		33.401	31.9820	0.013	130.138			
2.1758	0.002		31.9957					
29.5114	0.018	0.068	59.3038	0.007	0.010			
29.5302			59.3110					
29.6859		0.069	61.5901	0.006	30.565			
29.6996	0.013		61.5969					
		Comple	ex 2					
Energy	Δ_{tun}/cm^{-1}	gz	Energy	Δ_{tun}/cm^{-1}	gz			
0.0000		0.035	43.7937	0.097	28.280			
0.0009	0.0009		43.8910					
1.5238		36.645	44.1717	0.050	28.393			

1.5287	0.0049		44.2223		
42.8184		0.104	85.9314	0.002	0.027
42.8522	0.033		85.9332		
43.2314	0.075	0.156	86.5907	0.2	22.600
43.3072			86.7626		
Complex 3					
Energy	Δ_{tun}/cm^{-1}	g _{zz}	Energy	Δ_{tun}/cm^{-1}	gz
0.0000		16.002	150.1008	0.0043	11.168
0.0002	0.0002		150.1051		
2.1699	0.0003	35.241	151.8862	0.0056	32.336
2.1702			151.8918		
42.1553	0.0020	17.197	192.2602	0.048	13.054
42.1573			192.3089		
43.5862	0.0129	30.564	193.2379	0.069	26.667
43.5991			193.3074		

 Table S23. Crystal data and structure refinement details of 1 to 3.

	1	2	3
Empirical formula	$C_{44}H_{22}Dy_2F_{24}N_4O_{10}$	$C_{44}H_{28}Dy_2F_{12}N_4O_{10}$	$C_{57}H_{75}Dy_2N_5O_{11}$
Formula weight	1547.65	1325.70	1331.22
Temperature/K	293(2)	150.0	150.01
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P2 ₁ /n	P2 ₁ /n	P2 ₁ /n
a/Å	10.8075(3)	10.559(3)	13.2636(18)
b/Å	17.3606(5)	17.123(3)	35.219(5)
c/Å	13.7617(4)	12.969(2)	13.709(2)
α/°	90	90	90

β/°	90.7690(10)	91.215(14)	97.401(3)
γ/°	90	90	90
Volume/Å ³	2581.80(13)	2344.3(9)	6350.7(16)
Ζ	2	2	4
$\rho_{calc}g/cm^3$	1.991	1.878	1.392
μ/mm ⁻¹	3.018	3.271	2.391
F(000)	1484.0	1280.0	2688.0
Crystal size/mm ³	0.056 × 0.033 × 0.027	$0.091 \times 0.078 \times 0.057$	0.046 × 0.037 × 0.024
Radiation	MoKα (λ = MoKα (λ = 0.71073) 0.71073)		ΜοΚα (λ = 0.71073)
20 range for data	4.824 to 56.72	5.028 to 50.736	4.584 to 50.998
collection/°			
Index ranges	$-11 \le h \le 14, -23 \le k \le 23, -18 \le 1 \le 18$	$\begin{array}{c} -12 \leq h \leq 12, -20 \leq \\ k \leq 20, -15 \leq l \leq 15 \end{array}$	$\begin{array}{l} -16 \leq h \leq 16, -40 \\ \leq k \leq 42, -16 \leq 1 \\ \leq 16 \end{array}$
Reflections	27196	21676	57708
collected			
Independent	$6447 [R_{int} = 0.0251, R_{aircrea} = 0.0208]$	4227 [$R_{int} = 0.0212$, $R_{sigms} = 0.0158$]	$11811 [R_{int} = 0.0423, R_{sigma} =$
reflections			0.0322]
Data/restraints/	6447/0/379	4227/6/342	11811/0/676
parameters			
Goodness-of-fit on F ²	1.035	1.171	1.246

Final R indexes	$R_1 = 0.0358, WR_2 =$	$R_1 = 0.0290, wR_2 =$	$R_1 = 0.0584,$
	0.0964	0.0659	$wR_2 = 0.1287$
$[I \ge 2\sigma(I)]$			
Final R indexes	$R_1 = 0.0441, WR_2 =$	$R_1 = 0.0291, wR_2 =$	$R_1 = 0.0621,$
	0.1035	0.0660	$wR_2 = 0.1310$
[all data]			

References

- J. Long, F. Habib, P.-H. Lin, I. Korobkov, G. Enright, L. Ungur, W. Wernsdorfer, L. F. Chibotaru and M. Murugesu, Single-molecule magnet behavior for an antiferromagnetically superexchange-coupled dinuclear dysprosium (III) complex, *J. Am. Chem. Soc.*, 2011, **133**, 5319-5328.
- W.-M. Wang, S.-Y. Wang, H.-X. Zhang, H.-Y. Shen, J.-Y. Zou, H.-L. Gao, J.-Z. Cui and B. Zhao, Modulating single-molecule magnet behaviour of phenoxo-O bridged lanthanide (III) dinuclear complexes by using different β-diketonate coligands, *Inorg. Chem. Front.*, 2016, **3**, 133-141.
- 3. L. Zhao, J. Wu, H. Ke and J. Tang, Three dinuclear lanthanide (iii) compounds of a polydentate Schiff base ligand: Slow magnetic relaxation behaviour of the Dy III derivative, *CrystEngComm*, 2013, **15**, 5301-5306.
- S. Yu, Z. Hu, Z. Chen, B. Li, Y.-Q. Zhang, Y. Liang, D. Liu, D. Yao and F. Liang, Two dy (III) single-molecule magnets with their performance tuned by schiff base ligands, *Inorg. Chem.*, 2019, 58, 1191-1200.

- K. Zhang, D. Liu, V. Vieru, L. Hou, B. Cui, F.-S. Guo, L. F. Chibotaru and Y.-Y. Wang, Transitions of two magnetic interaction states in dinuclear Dy (III) complexes via subtle structural variations, *Dalton Trans.*, 2017, 46, 638-642.
- Y.-N. Guo, X.-H. Chen, S. Xue and J. Tang, Modulating magnetic dynamics of three Dy2 complexes through keto–enol tautomerism of the o-vanillin picolinoylhydrazone ligand, *Inorg. Chem.*, 2011, 50, 9705-9713.
- A.-J. Hutchings, F. Habib, R. J. Holmberg, I. Korobkov and M. Murugesu, Structural rearrangement through lanthanide contraction in dinuclear complexes, *Inorg. Chem.*, 2014, 53, 2102-2112.
- S. Biswas, S. Das, G. Rogez and V. Chandrasekhar, Hydrazone-Ligand-Based Homodinuclear Lanthanide Complexes: Synthesis, Structure, and Magnetism, *Eur. J. Inorg. Chem.*, 2016, 2016, 3322-3329.
- S.-Y. Lin, G.-F. Xu, L. Zhao, Y.-N. Guo, Y. Guo and J. Tang, Observation of slow magnetic relaxation in triple-stranded lanthanide helicates, *Dalton Trans.*, 2011, 40, 8213-8217.
- Y.-J. Wang, D.-F. Wu, J. Gou, Y.-Y. Duan, L. Li, H.-H. Chen, H.-L. Gao and J.-Z. Cui, Modulation of the properties of dinuclear lanthanide complexes through utilizing different β-diketonate co-ligands: near-infrared luminescence and magnetization dynamics, *Dalton Trans.*, 2020, 49, 2850-2861.
- Y. Ge, Y. Huang, J. L. B. Montenegro, Y. Cui, W. Liu, Y. Li and B. L. Wang, Synthesis, Structures, and Single-Molecule Magnetic Properties of Three Dy2 Complexes, *Chem. Asian J.*, 2019, 14, 986-994.

- H. Tian, L. Ungur, L. Zhao, S. Ding, J. Tang and L. F. Chibotaru, Exchange Interactions Switch Tunneling: A Comparative Experimental and Theoretical Study on Relaxation Dynamics by Targeted Metal Ion Replacement, *Chem. Eur. J.*, 2018, 24, 9928-9939.
- Y.-X. Chang, W.-M. Wang, R.-X. Zhang, H.-Y. Shen, X.-P. Zhou, N.-N. Wang, J.-Z. Cui and H.-L. Gao, Dinuclear Ln (III) complexes constructed from an 8-hydroxyquinoline Schiff base derivative with different terminal groups show differing slow magnetic relaxation, *New J Chem*, 2017, 41, 6251-6261.
- J. Acharya, N. Ahmed, J. F. Gonzalez, P. Kumar, O. Cador, S. K. Singh, F. Pointillart and V. Chandrasekhar, Slow magnetic relaxation in a homo dinuclear Dy (III) complex in a pentagonal bipyramidal geometry, *Dalton Trans.* 2020, 49, 13110-13122.
- S. Xue, Y. N. Guo, L. Ungur, J. Tang and L. F. Chibotaru, Tuning the Magnetic Interactions and Relaxation Dynamics of Dy2 Single-Molecule Magnets, *Eur. J. Chem*, 2015, 21, 14099-14106.
- H.-M. Dong, H.-Y. Li, Y.-Q. Zhang, E.-C. Yang and X.-J. Zhao, Magnetic relaxation dynamics of a centrosymmetric Dy2 single-molecule magnet triggered by magnetic-site dilution and external magnetic field, *Inorg. Chem.*, 2017, 56, 5611-5622.
- J.-Y. Ge, H.-Y. Wang, J. Su, J. Li, B.-L. Wang, Y.-Q. Zhang and J.-L. Zuo, Modulating the magnetic interaction in new triple-decker dysprosium (III) single-molecule magnets, *Inorg. Chem.*, 2018, 57, 1408-1416.
- D. Li, M.-M. Ding, Y. Huang, D. F. T. Yepes, H. Li, Y. Li, Y.-Q. Zhang and J. Yao, Evolution from a single relaxation process to two-step relaxation processes of Dy 2 single-molecule magnets via the modulations of the terminal solvent ligands, *Dalton Trans.*. 2021, 50, 217-228.

- Y. Ge, D. Li, G. Wang, Y. Cui, M. S. Najib, Y. Li and B. L. Wang, Single-Molecule Magnetism in Three Dy2 Complexes from the Use of a Pentadentate Schiff Base Ligand and Different Benzoates, *Chem. Asian J.*, 2019, 14, 2846-2852.
- W. Zhang, S.-M. Xu, Z.-X. Zhu, J. Ru, Y.-Q. Zhang and M.-X. Yao, Strong intramolecular Dy III–Dy III magnetic couplings up to 15.00 cm-1 in phenoxyl-bridged dinuclear 4f complexes, *New J. Chem.* 2020, 44, 2083-2090.
- 21. W.-Y. Zhang, Y.-M. Tian, H.-F. Li, P. Chen, W.-B. Sun, Y.-Q. Zhang and P.-F. Yan, A series of dinuclear Dy (III) complexes bridged by 2-methyl-8-hydroxylquinoline: replacement on the periphery coordinated β-diketonate terminal leads to different single-molecule magnetic properties, *Dalton Trans.* 2016, **45**, 3863-3873.
- W.-Y. Zhang, Y.-Q. Zhang, S.-D. Jiang, W.-B. Sun, H.-F. Li, B.-W. Wang, P. Chen, P.-F. Yan and S. Gao, Dramatic impact of the lattice solvent on the dynamic magnetic relaxation of dinuclear dysprosium single-molecule magnets, *Inorg. Chem. Front.*, 2018, 5, 1575-1586.
- F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De Vico, I. Fdez. Galván, N. Ferré, L. M. Frutos and L. Gagliardi, Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table.*Journal*, 2016.
- 24. P.-Å. Malmqvist and B. O. Roos, The CASSCF state interaction method, *Chemical physics letters*, 1989, **155**, 189-194.
- 25. P. A. M. J. Finley, B. O Roos, L. Serrano-Andres, , The multi-state CASPT2 method, *Chem. Phys. Lett*, 1998, **288**, 9-306.

- 26. P. Å. Malmqvist, K. Pierloot, A. R. M. Shahi, C. J. Cramer and L. Gagliardi, The restricted active space followed by second-order perturbation theory method: Theory and application to the study of Cu O 2 and Cu 2 O 2 systems, *J. Chem. Phys.*, 2008, **128**, 204109.
- P. Å. Malmqvist, A. Rendell and B. O. Roos, The restricted active space self-consistentfield method, implemented with a split graph unitary group approach, *J. Phys. Chem.*, 1990, 94, 5477-5482.
- 28. D. Ma, G. Li Manni and L. Gagliardi, The generalized active space concept in multiconfigurational self-consistent field methods, *J.Chem. Phys.*, 2011, **135**, 044128.
- 29. B. O. Roos, V. Veryazov and P.-O. Widmark, Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers, *Chem. Acc*, 2004, **111**, 345-351.
- P. Å. Malmqvist, B. O. Roos and B. Schimmelpfennig, The restricted active space (RAS) state interaction approach with spin–orbit coupling, *Chem. Phys. Lett.*, 2002, 357, 230-240.
- K. L. Harriman, J. J. Le Roy, L. Ungur, R. J. Holmberg, I. Korobkov and M. Murugesu, Cycloheptatrienyl trianion: an elusive bridge in the search of exchange coupled dinuclear organolanthanide single-molecule magnets, *Chem. Sci.*, 2017, 8, 231-240.
- P. Zhang, M. Perfetti, M. Kern, P. P. Hallmen, L. Ungur, S. Lenz, M. R. Ringenberg, W. Frey, H. Stoll and G. Rauhut, Exchange coupling and single molecule magnetism in redox-active tetraoxolene-bridged dilanthanide complexes, *Chem. Sci.*, 2018, 9, 1221-1230.

- 33. I. F. Diaz-Ortega, J. M. Herrera, D. Aravena, E. Ruiz, T. Gupta, G. Rajaraman, H. Nojiri and E. Colacio, Designing a Dy2 single-molecule magnet with two well-differentiated relaxation processes by using a nonsymmetric Bis-bidentate bipyrimidine-n-oxide ligand: a comparison with mononuclear counterparts, *Inorg. Chem.*, 2018, 57, 6362-6375.
- 34. I. F. Díaz-Ortega, J. M. Herrera, Á. Reyes Carmona, J. R. Galán-Mascarós, S. Dey, H. Nojiri, G. Rajaraman and E. Colacio, A Chiral Bipyrimidine-Bridged Dy2 SMM: A Comparative Experimental and Theoretical study of the Correlation between the Distortion of the DyO6N2 coordination sphere and the anisotropy barrier, *Front. Chem*, 2018, 537.
- 35. H.-M. Dong, H.-Y. Li, Y.-Q. Zhang, E.-C. Yang and X.-J. Zhao, Magnetic relaxation dynamics of a centrosymmetric Dy2 single-molecule magnet triggered by magnetic-site dilution and external magnetic field, *Inorg. Chem.*, 2017, **56**, 5611-5622.