Structural engineering of bimetallic selenides for high-energy density sodium-ion half/full batteries

Jing Zhu^a, Xiaoyu Chen,^a Lei Zhang,^c Quan Wang,^{c*} Jun Yang^{b*}, Hongbo Geng^{c*}

^aCollege of Science&State Key Laboratory of Tea Plant Biology and Utilization,

Anhui Agricultural University, 130 Changjiang West Road, Anhui, 230036, China

^bSchool of Material Science & Engineering, Jiangsu University of Science and

Technology, Zhenjiang, 212003, China

°School of Materials Engineering, Changshu Institute of Technology, Changshu,

Jiangsu 215500, China

E-mail address: <u>wangquan@cslg.edu.cn; iamjyang@just.edu.cn; hbgeng@gdut.edu.cn</u>.

Figure S1. (a) XRD pattern and (b) SEM image of ZIF-8.

Figure S2. Full XPS survey spectrum of ZnSe/MoSe₂@NC.

Figure S3. (a) XRD pattern and (b) SEM image of ZnSe.

Figure S4. (a) XRD pattern and SEM image of MoSe₂.

Figure S5. BET surface area of ZnSe/MoSe₂@NC.

Figure S6. GCD curves of ZnSe: (a) initial 5 cycles at 0.1 A g⁻¹; (b) 0.1 to 5 A g⁻¹.

Figure S7. GCD curves of $MoSe_2$: (a) initial 5 cycles at 0.1 A g^{-1} ; (b) 0.1 to 5 A g^{-1} .

Figure S8. Capacitive contribution in CV curves under the scan rate of (a) 0.4 mV s^{-1} , (b) 0.6 mV s^{-1} , (c) 0.8 mV s^{-1} and (d) 1.0 mV s^{-1} .