Electronic Supporting Information

Temperature Sensing of Sr₃Y₂Ge₃O₁₂:Bi³⁺,Sm³⁺ Garnet Phosphors with Tunable Sensitivity

Rui Sun,^{a,b} Xiang Wei,^a Huijuan Yu,^{*a} Pengyun Chen,^b Haiyong Ni,^b Junhao Li,^b Jiansheng Huo,^b Jianbang Zhou^{*b} and Qiuhong Zhang^{*b}

^a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China

^b Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Guangdong Province Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510651, PR China

Fig. S1 The XRD patterns of (a) Sr₃Y₂Ge₃O₁₂:yBi³⁺ (*y* = 0.02 - 0.10) and (b) Sr₃Y₂Ge₃O₁₂:*x*Sm³⁺ (*x* = 0.02 - 0.18).

The XRD patterns of $Sr_3Y_2Ge_3O_{12}$: yBi^{3+} (y = 0.02 - 0.10) and $Sr_3Y_2Ge_3O_{12}$: xSm^{3+} (x = 0.02 - 0.18) are shown in **Fig. S1a** and **S1b**. It could be observed that the diffraction peaks $Sr_3Y_2Ge_3O_{12}$: yBi^{3+} (y = 0.02 - 0.10) matched well with the standard diffraction pattern of $Sr_3Y_2Ge_3O_{12}$ (JCPDS 85-2410). When the doping Sm^{3+} concentration is $x \ge 0.14$, the impurity appears in the $Sr_3Y_2Ge_3O_{12}$: xSm^{3+} (x = 0.02 - 0.18) sample.

Fig. S2 XRD Rietveld refinement of $Sr_3Y_2Ge_3O_{12}:0.06Bi^{3+}, xSm^{3+}(x = 0 - 0.10)$.

Fig. S3 The PLE (a) and PL (b) spectrum of $Sr_3Y_2Ge_3O_{12}$: yBi^{3+} (y = 0.02 - 0.10), The PLE (c) and PL (d) spectrum of $Sr_3Y_2Ge_3O_{12}$: xSm^{3+} (x = 0.02 - 0.14).

The intensity of both the PLE and PL spectra of $Sr_3Y_2Ge_3O_{12}$: $yBi^{3+}(y = 0.02 - 0.10)$ increased firstly with increasing content and reached the maximum at y = 0.06, then decreased due to concentration quenching. Similarly, the $Sr_3Y_2Ge_3O_{12}$: $xSm^{3+}(x = 0.02 - 0.14)$ showed an optimal concentration at x = 0.02.

Fig. S4 Dependence of τ_0/τ on $C^{6/3}$, $C^{8/3}$, and $C^{10/3}$.

In general, the energy transfer between sensitizer and activator in the host may occur via two main mechanisms, namely exchange interaction and electric multipolar interaction. To verify which of these mechanisms plays an important role, the critical distance Rc between Bi³⁺ and Sm³⁺ in Sr₃Y₂Ge₃O₁₂ was estimated using the following equation:

$$R_C = 2 \times \left[\frac{3V}{4\pi\chi_C N}\right]^{1/3}$$

where *V* corresponds to the volume of the unit cell, *N* is the number of host cations in the unit cell, and *Xc* is the critical total concentration of Bi³⁺ and Sm³⁺. For Sr₃Y₂Ge₃O₁₂:0.06Bi³⁺, 0.018Sm³⁺ phosphor, N = 8, V = 2241.46 Å³, $\chi = 0.06+0.018 =$ 0.078, the *Rc* between Bi³⁺ and Sm³⁺ was calculated to be 19.00 Å. Thus, in the case of the maximum doping concentration, it still exceeds a distance of 8, excluding the possibility of exchange interactions. The energy transfer from Bi³⁺ to Sm³⁺ mainly resulted from multipolar interactions.

To further investigate the specific energy transfer mechanism between the sensitizer Bi^{3+} and the activator Sm^{3+} in $Sr_3Y_2Ge_3O_{12}$, we used Dexter energy transfer theory for a deeper elaboration. Dexter energy transfer theory and Reisfeld's approximation are expressed as follows:

$$\frac{\tau_0}{\tau} \propto C^{n/3}$$

where *C* is the sum of Bi³⁺ and Sm³⁺ concentration in the sample; and *n* is a constant. Different values of *n* values indicate different interaction models, which correspond to dipole-dipole (d-d) interaction, dipole-quadrupole (d-q) interaction and quadrupole-quadrupole (q-q) interaction when n = 6, 8 and 10, respectively. The linear fit between τ_0/τ and the total concentration *C* for different values of *n* are depicted in **Fig. S4**. It was clearly that the best linear fit was achieved when n = 6, which indicated that the energy transfer mechanism between Bi³⁺ and Sm³⁺ was mainly dipole-dipole interaction.

Fig. S5 The energy level diagrams of Bi^{3+} and Sm^{3+} ions in $Sr_3Y_2Ge_3O_{12}$.

The energy level diagrams of Bi^{3+} and Sm^{3+} ions in $Sr_3Y_2Ge_3O_{12}$ are present in **Fig. S5** to explain the energy transfer process in detail. The free electrons of the Bi^{3+} ions can absorb UV light and jump from the ${}^{1}S_{0}$ ground state to the ${}^{3}P_{1}$ excited state. On the one hand, part of the excited electrons falls back to the ground ${}^{1}S_{0}$ state and gives out a broad blue emission band of in the range of 420 - 540 nm. On the other hand, some of the excited electrons migrate to neighboring Sm^{3+} ions, and then relax radiatively from ${}^{4}G_{5/2}$ excited state to the lower ${}^{6}H_{11/2}$, ${}^{6}H_{9/2}$, ${}^{6}H_{7/2}$ and ${}^{6}H_{5/2}$ states, producing the typical emission at 565, 600, 648 and 706 nm, respectively. Meanwhile,

the free electrons of Sm³⁺ can also absorb UV light and jump to the excited state, and then gives its characteristic f-f emissions as mentioned above.

Fig. S6 (a) Temperature-dependent FIR (I_{Sm}³⁺/I_{Bi}³⁺) of Sr₃Y₂Ge₃O₁₂:0.06Bi³⁺,0.02Sm³⁺ phosphor upon the cycling process of heating and cooling in the temperature range from 298 to 498 K. (b) Temperature cycling of FIR in the temperature 298-498 K.

Fig. S7 The temperature resolution of $Sr_3Y_2Ge_3O_{12}$: 0.06Bi³⁺, 0.02Sm³⁺ phosphor in the range of

298-498 K.

Fig. S8 (a) Emission spectra of $Sr_3Y_2Ge_3O_{12}$:0.06Bi³⁺,0.06Sm³⁺ from 298 to 498 K, (b) The integrated PL intensity of Bi³⁺ and Sm³⁺ from 298 K to 498 K, (c) Measured and fitted FIR data of $Sr_3Y_2Ge_3O_{12}$:0.06Bi³⁺,0.06Sm³⁺, (d) Dependence of S_a and S_r on T.

Fig. S9 (a) Emission spectra of $Sr_3Y_2Ge_3O_{12}$:0.06Bi³⁺,0.10Sm³⁺ from 298 to 498 K, (b) The integrated PL intensity of Bi³⁺ and Sm³⁺ from 298 K to 498 K, (c) Measured and fitted FIR data of $Sr_3Y_2Ge_3O_{12}$:0.06Bi³⁺,0.10Sm³⁺, (d) Dependence of S_a and S_r on T.

Fig. S10 (a) Emission spectra of $Sr_3Y_2Ge_3O_{12}$:0.06Bi³⁺,0.14Sm³⁺ from 298 to 498 K, (b) The integrated PL intensity of Bi³⁺ and Sm³⁺ from 298 K to 498 K, (c) Measured and fitted FIR data of $Sr_3Y_2Ge_3O_{12}$:0.06Bi³⁺,0.14Sm³⁺, (d) Dependence of S_a and S_r on T.

Formula		Sr ₃ Y	$Sr_{3}Y_{1.94}Bi_{0.06}Ge_{3}O_{12}$						
Crystal system		Cubi	Cubic						
Space group		$Ia^{\overline{3}}a$	$Ia^{\overline{3}}d$ (230, O _h ¹⁰)						
Cell Paramet	ers	a=1	<i>a</i> = 13.08235 Å						
Cell Parameters Volume		me V=2	V= 2239.016 Å ³						
Reliability factors $R_{wp}=1$		R _{wp} =15.83%,	R_{p} = 11.08 % and GOF= 2.99						
Atom	Site	X	у	Z	Occupancy	U _{iso}			
Sr ²⁺	24c	0.125	0.00	0.25	1	0.024			
Y ³⁺ /Bi ³⁺	16a	0.00	0.00	0.00	1	0.022			
Ge ⁴⁺	24d	0.375	0	0.25	1	0.021			
O ²⁻	96h	0.965	0.054	0.160	1	0.029			

 $\label{eq:stable} \textbf{Table S1} \ \text{Rietveld refinement and crystallographic data of } Sr_3Y_{1.94}Bi_{0.06}Ge_3O_{12}.$

 $\textbf{Table S2} \ \text{Rietveld refinement and crystallographic data of } Sr_3Y_{1.92}Bi_{0.06}Sm_{0.02}Ge_3O_{12}.$

Formula		Sr ₃ Y ₁	$Sr_{3}Y_{1.92}Bi_{0.06}Sm_{0.02}Ge_{3}O_{12}$					
Crystal system	Cubic	Cubic						
Space group	$Ia\overline{3}d$	$Ia^{\overline{3}}d$ (230, O_{h}^{10})						
Cell Parameters	<i>a</i> = 13	<i>a</i> = 13.08323 Å						
Cell Parameters	Volume	V= 2	$V = 2239.468 \text{ Å}^3$					
Reliability factors R_{wp} = 15.42%, R_p = 10.11% and GOF= 2.83								
Atom	Site	X	у	Z	Occupancy	U _{iso}		
Sr^{2+}	24c	0.125	0.00	0.25	1	0.025		
Y ³⁺ /Bi ³⁺ /Sm ³⁺	16a	0.00	0.00	0.00	1	0.025		
Ge ⁴⁺	24d	0.375	0	0.25	1	0.021		
O ²⁻	96h	0.959	0.051	0.158	1	0.027		

Formula		Sr ₃ Y _{1.88}	$Sr_{3}Y_{1.88}Bi_{0.06}Sm_{0.06}Ge_{3}O_{12}$					
Crystal system		Cubic	Cubic					
Space group	$Ia^{\overline{3}}d$ (2	$Ia^{\overline{3}}d$ (230, O _h ¹⁰)						
Cell Parameters	<i>a</i> = 13.0	<i>a</i> = 13.08423 Å						
Cell Parameters V	olume	V=223	V= 2239.982 Å ³					
Reliability factors R_{wp} = 15.26%, R_p = 9.52% and GOF= 2.80								
Atom	Site	Х	У	Z	Occupancy	U _{iso}		
Sr ²⁺	24c	0.125	0.00	0.25	1	0.027		
Y ³⁺ /Bi ³⁺ /Sm ³⁺	16a	0.00	0.00	0.00	1	0.025		
Ge ⁴⁺	24d	0.375	0	0.25	1	0.025		
O ²⁻	96h	0.959	0.051	0.159	1	0.029		

 $\textbf{Table S3} \ \text{Rietveld refinement and crystallographic data of } Sr_3Y_{1.88}Bi_{0.06}Sm_{0.06}Ge_3O_{12}.$

 $\textbf{Table S4} \ Rietveld \ refinement \ and \ crystallographic \ data \ of \ Sr_{3}Y_{1.84}Bi_{0.06}Sm_{0.10}Ge_{3}O_{12}.$

Formula		$Sr_{3}Y_{1.8}$	$Sr_{3}Y_{1.84}Bi_{0.06}Sm_{0.10}Ge_{3}O_{12}$						
Crystal system		Cubic	Cubic						
Space group		$Ia\overline{3}d$ (2)	$Ia^{\overline{3}}d$ (230, O _h ¹⁰)						
Cell Parameters	<i>a</i> = 13.0	<i>a</i> = 13.0875 Å							
Cell Parameters	V= 224	$V = 2241.662 \text{ Å}^3$							
Reliability factors R_{wp} = 14.26%, R_p = 9.28% and GOF= 2.60									
Atom	Site	Х	у	Z	Occupancy	U _{iso}			
Sr ²⁺	24c	0.125	0.00	0.25	1	0.030			
Y ³⁺ /Bi ³⁺ /Sm ³⁺	16a	0.00	0.00	0.00	1	0.027			
Ge ⁴⁺	24d	0.375	0	0.25	1	0.028			
O ²⁻	96h	0.960	0.054	0.158	1	0.033			

 $\textbf{Table S5} \ \text{Rietveld refinement and crystallographic data of } Sr_3Y_{1.8}Bi_{0.06}Sm_{0.14}Ge_3O_{12}.$

Formula		$Sr_3Y_{1.8}$	$Sr_{3}Y_{1.8}Bi_{0.06}Sm_{0.14}Ge_{3}O_{12}$						
Crystal system		Cubic	Cubic						
Space group		$Ia^{\overline{3}}d(2$	$Ia^{\overline{3}}d$ (230, O _h ¹⁰)						
Cell Parameters	<i>a</i> = 13.0	<i>a</i> = 13.08755 Å							
Cell Parameters Volume		V= 224	$V = 2241.687 \text{ Å}^3$						
Reliability factors R_{wp} = 11.55%, R_p = 7.58% and GOF= 2.11									
Atom	Site	X	у	Z	Occupancy	U _{iso}			
Sr ²⁺	24c	0.125	0.00	0.25	1	0.034			
Y ³⁺ /Bi ³⁺ /Sm ³⁺	16a	0.00	0.00	0.00	1	0.030			
Ge ⁴⁺	24d	0.375	0	0.25	1	0.031			
O ²⁻	96h	0.958	0.051	0.158	1	0.041			

Table S6 Relative sensitivities (S_r) of some garnet FIR type thermometers.

Compounds	Temperature (K)	$S_r (\% K^{-1})$	Ref.
Sr ₃ Y ₂ Ge ₃ O ₁₂ :Bi ³⁺ ,Sm ³⁺	298-498 K	0.61	This work
YAG:Nd ³⁺	283-342 K	0.15	[21]
GGG:Yb,Er	300-973 K	0.41	[22]
$Ca_2YZr_2Al_3O_{12}:Bi^{3+},Eu^{3+}$	250-575 K	0.664	[23]
$Li_{3}Gd_{3}Te_{2}O_{12}:Bi^{3+}, Pr^{3+}$	100-300 K	0.672	[24]
LuAG:Eu ³⁺ /Mn ⁴⁺	303-358 K	0.7	[25]
$Mg_{3}Y_{2}Ge_{3}O_{12}:Ce^{3+}, Cr^{3+}$	298-573 K	1.38	[26]
$Sr_2NaMg_2V_3O_{12}{:}Eu^{3+}$	300-500 K	1.61	[27]
LuAG:Ce ³⁺ ,Mn ⁴⁺	100-350 K	4.37	[28]