Supporting Information for Publication

In-Situ Electrochemical Transformation of Ni²⁺ to NiOOH as an Effective Electrode for Water Oxidation Reaction

Sangeetha Kumaravel,^{†‡} Rishivandhiga Jayakumar,[†] Karthik Kumaran Saravanan,[†] Vennala Niharika,[†] Bariki Eunice Evangeline,[†] Vengatesan Singaram^{†‡} and Subrata Kundu^{†‡*}

[†]Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.

* Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

*To whom correspondence should be addressed, *E-mail: <u>skundu@cecri.res.in</u> and kundu.subrata@gmail.com*, Tel: +91 4565-241487.

This file contains pages from S1 to S30, where the detailed, reagents and instruments used in the study, figures and Tables corresponding to NiOOH@GDL has been given.

Number of Pages: 30

Number of Figures: 17

Number of Tables: 03

Figures	Subject of the Figure	Page
and Tables		no.
	SEM images of GDL surface after activation step for NiOOH	
	@GDL-A and NiOOH @GDL-C	
<u></u>	(a) High-angle annular dark-field imaging (HAADF) image	S 9
	of NiOOH@GDL-B: (b) overlapped elemental mapping of Ni	
	and O and (c and d) individual colour mapping of Ni and O.	
S 3	EDAX spectra of electrochemically activated NiOOH@GDL	S10
S4	Stacked XRD pattern for Bare CC, Ni ²⁺ modified GDL and after cycling NiOOH	S11
\$5	CV curve during first and tenth cycle of activation step (E/V	S12
	vs Hg/HgO) for NiOOH@GDL-B.	
<u>\$6</u>	Backward CV curve for the low concentrated catalyst	S13
	NiOOH@GDL-D and NiOOH@GDL-E for comparison	
	study	
S7	Tafel slope and EIS analysis of low concentrated catalyst	S14
	NiOOH@GDL-D and NiOOH@GDL-E for comparison	
	study	
S8	Post Tafel slope analysis for various conc. NiOOH@GDL	S15
	performed after cycling study	
S9	Electrochemical impedance analysis of (a) before cycling	S16
	NiOOH catalysts and (b) after cycling various NiOOH	
	catalyst at 444 mV overpotential.	
S10	After cycling, ECSA calculated from the redox curve of the	S17
	CV cycle and calculated surface area concentration value for	
	all the three catalyst	
S11	Mass activity calculated at different potential value and (b)	S18
	the current density vs overpotential plot for all three catalyst	
	compared with comm. NiO	
S12	Turnover frequency (TOF) calculated for all the three	S19
	NiOOH@GDL catalysts at 300 mV overpotential	

S13	Post morphological analysis with FE-SEM image ofNiOOH@GDL performed after cycling study	S20
<u>\$14</u>	Post-HAADF colour mapping of NiOOH@GDL performedafter cycling confirming the presence of Ni and O	S21
\$15	Post EDAX spectra for NiOOH@GDL performed after cycling study	S22
S16	XRF spectrum of NiOOH@GDL-B performed before and after AD study	S23
S17	RamanspectraofafterchronoamperometricNiOOH@GDL-B	S24
Table S1	Optimization information of stable NiOOH modified over GDL	S25
Table S2	Comparison of OER performance of NiOOH@GDL-Bcatalyst with other Ni-oxide catalyst in terms ofmethodology, overpotential, Tafel slope, loading and binder	S26
Table S3	Comparison of OER performance of NiOOH@GDL-B catalyst with other transition metal based catalyst in terms of methodology, overpotential, Tafel slope, loading and binder	S27

Reagents and Instrumental details

The precursor, Nickel (II) acetate tetrahydrate (Ni(OCOCH₃)₂.4H₂O), Potassium Hydroxide (KOH) were procured from Sigma Aldrich. Hg/HgO (reference electrodes) was purchased from the Aut-M204 auto-lab instrument and the carbon cloth (GDL) (counter electrode) were purchased from Alfa- Aesar. The entire OER study was carried out using Auto lab-M204 instrument purchase from Metrohm Pvt Ltd, Netherlands. Deionized water (DI) was used for the synthesis of different concentration NiOOH@GDL catalyst and its characterization. The NiOOH@GDL electrocatalyst was characterized using various techniques such as XRD, XPS, Raman, FE-SEM, HR-TEM, EDS and HADDF analysis.

The X-ray diffraction (XRD) analysis was carried out using a X-RAY Diffractometer D8 Advance, Bruker with Cu K α radiation ($\lambda = 0.154178$ nm) with a scanning rate of 5° min⁻ ¹ in the 20 range 10-80°, with a power of 40 KV; 30 mA. The X-ray photoelectron spectroscopic (XPS) analysis was done to study the oxidation state of elements present in the materials and analysed by using ESCALAB 250xi Base System XR6 Micro-focused Monochromator (Al Ka XPS) XR4 Twin Anode Mg/Al (300/400W) X-Ray Source, EX06 Ion gun. The LASER Raman measurements were carried out with LabRAM HR Evolution, Horiba Jobin Yvon Raman Microscope using an excitation wavelength of 532 nm (He-Ne laser). The structural studies and the High-angle annular dark-field imaging (HAADF) colour mapping of both the electrocatalyst was carried in HR-TEM, (FEI, Netherland, Talos F200S) working at an accelerating voltage of 200 kV. The Energy Dispersive X-ray Spectroscopy (EDAX) analysis was done with the HR-TEM instrument with a separate EDAX detector (SDD) connection. Further, the Field Emission Scanning Electron Microscope (FE-SEM) analysis was performed using SUPRA 55VP, Gemini Column with air lock system (Carl Zeiss, Germany). The X-ray fluorescence (XRF) analysis was carried out using XGT-5200 (Horiba, Japan) X-ray analytical microscope with X-ray tube 50 kV.

Ink preparation method for fabricating commercial NiO electrocatalyst over CC

For comparison, the commercially available NiO was procured. Then 3 mg of the NiO catalyst was taken in the solution containing 750 μ L DI H₂O, 250 μ L ethanol and 50 μ L of nafion and the solution was kept at sonication for 30 minutes, the well-dispersed brown colour solution was appeared. From there, 34.5 μ L of solution was drop-casted to the carbon cloth (CC) over the area of (1 × 0.5 cm²). Before drop-casting, the bare CC was dipped in the DI water and solicited for 15 minutes and turned to hydrophilic in nature. Further, the coated

NiO was kept at drying for complete night in the hot oven at 50 °C. Finally, the mass loading calculated for the commercial NiO was 0.205 mg cm⁻² and the same has been proceed for the electrochemical studies.

Calculating ECSA from the redox features of CV

The integrated area of the redox peak of Ni^{2+} to $Ni^{3+} = 0.00227 VA$

The associated energy at the corresponding potential = $0.00227 \text{ VA} / 0.005 \text{ Vs}^{-1}$

 $Q = I \ge t$ I = Q/t

Charge, Q = 0.454 AS

Now, the number of electron transferred is = 0.454 C / 1.602×10^{-19} C

 $= 0.283 \times 10^{19}$

Since, the reduction of Ni³⁺ to Ni²⁺ is a single electron transfer process, the number electron calculated above is exactly the same as the number of surface active sites.

Hence,

The number of Ni that participated in OER is = 2.83×10^{18} for NiOOH@GDL-A

Similarly, we have calculated the ECSA value from the integrated area of the redox peak and given in the below table.

Catalysts	Integrated area (VA) from	ECSA value from redox
	the redox CV curve	curve
NiOOH@GDL-A	0.00227	2.83×10^{18}
NiOOH@GDL-B	0.00801	1.0 x 10 ¹⁹
NiOOH@GDL-C	0.00268	3.34 x 10 ¹⁸

Turn over Frequency calculation

The TOF was calculated using the following formula,

$$\mathbf{TOF} = \mathbf{j} \times \mathbf{N}_{\mathbf{A}} / \mathbf{F} \times \mathbf{n} \times \mathbf{\Gamma}$$

Here, **j** is the current density in A cm⁻², N_A is the geometrical surface area, **F** is the Faradaic constant (96 485 C mol⁻¹), **n** is the number of electron involved during OER, Γ is the surface concentration calculated from the ECSA during redox curve.

Using the above equation, the TOF was calculated for all the four catalyst such as NiOOH@GDL-A, NiOOH@GDL-B and NiOOH@GDL-C.

NiOOH@GDL-A = $(9.97 \times 10^{-3}) \times (6.023 \times 10^{23}) / (2.83 \times 10^{18}) (4) (96485)$ **NiOOH@GDL-A** = $5.497 \times 10^{-7} \text{ S}^{-1}$

NiOOH@GDL-A = $(22.66 \times 10^{-3}) \times (6.023 \times 10^{23}) / (1 \times 10^{19}) (4) (96485)$ **NiOOH@GDL-A** = $35.321 \times 10^{-7} \text{ S}^{-1}$

NiOOH@GDL-A = $(18.80 \times 10^{-3}) \times (6.023 \times 10^{23}) / (3.34 \times 10^{18}) (4) (96485)$ **NiOOH@GDL-A** = $8.784 \times 10^{-7} \text{ S}^{-1}$

Mass activity calculation

Current observed in particular potential for the NiOOH@GDL-B and Comm. NiO

Mass loading calculated for NiOOH@GDL-B = 0.607 mg cm^{-2}

Comm. NiO = 0.205 mg cm^{-2}

Fixed Overpotential	Current density of NiO in mA	Current density of
(V)	cm ⁻²	NiOOH@GDL-A in mA cm ⁻²
1.5	0.551	11.582
1.55	0.339	35.101
1.6	3.211	62.451

Mass activity is calculated using the formulae,

Mass activity = Current density/Loading of a catalyst

Hence,

Mass activity calculated = 3.211/0.205 = 15.669 mg cm⁻² for NiO at 1.6 V

Mass activity calculated = 62.451/0.607 = 102.886 mg cm⁻² for NiOOH@GDL-A at 1.6 V

Figure S1. (a and b) SEM images of GDL surface after 10 cycling of NiOOH @GDL-A and NiOOH @GDL-C catalysts.

Figure S2. (a) High-angle annular dark-field imaging (HAADF) image of NiOOH@GDL-B; (b) overlapped elemental mapping of Ni and O and (c and d) individual colour mapping of Ni and O.

Figure S3. EDAX spectra of before cycling NiOOH@GDL-B shows the elemental presence of Ni, O, C and K.

Figure S4. Stacked XRD pattern for Bare CC, Ni²⁺ modified GDL and after cycling NiOOH.

Figure S5. CV curve during first and tenth cycle of activation step (E/V vs Hg/HgO) for NiOOH@GDL-B.

Figure S6. Backward CV curve for the low concentrated catalyst NiOOH@GDL-D (a) and NiOOH@GDL-E (b) for comparison study.

Figure S7. (a) Tafel slope and (b) EIS analysis of low concentrated catalyst NiOOH@GDL-D and NiOOH@GDL-E for comparison study.

Figure S8. Post Tafel slope analysis for various Conc. NiOOH@GDL performed after cycling study.

Figure S9. Electrochemical impedance analysis of (a) before cycling NiOOH catalysts and (b) after cycling various NiOOH catalyst at 444 mV overpotential.

Figure S10. (a-c) After cycling, ECSA calculated from the redox curve from the CV cycle shows the surface area value for all the three catalysts.

Figure S11. (a) Mass activity calculated at different potential value and (b) the current density vs overpotential plot for all three catalyst compared with comm. NiO.

Figure S12. Turnover frequency (TOF) calculated for all the three NiOOH@GDL catalysts at 300 mV overpotential.

Figure S13. (a, b) Low and high magnified post morphological analysis with FE-SEM image of NiOOH@GDL performed after cycling study.

Figure S14. (a-d) are the post-HAADF colour mapping of NiOOH@GDL performed after cycling confirming the presence of Ni and O.

Figure S15. Post EDAX spectra for NiOOH@GDL performed after cycling study.

Figure S16. XRF spectrum of NiOOH@GDL-B performed before (a) and after (b) cycling study.

Figure S17. Raman spectra of after chronoamperometric NiOOH@GDL-B.

S. No	Parental Concentration of Ni(OCOCH ₃) ₂ .4H ₂ O Solution (M) in 10 mL DI water	Amount of Ni(OCOCH ₃) ₂ .4 H ₂ O (in gms)	Volume of Ni(OCOCH ₃) ₂ .4 H ₂ O Solution taken from the parental solution (μL)	Volume of DI H ₂ O (mL) used to prepare the parental Ni(OCOCH ₃) ₂ .4H ₂ O solution	Solution state	Name of the catalyst
1.	0.3	0.746	34.5	10	Dissolved	NiOOH@GDL-A
2.	0.5	1.244	34.5	10	Dissolved	NiOOH@GDL-B
3.	0.7	1.741	34.5	10	Dissolved	NiOOH@GDL-C
4.	0.05	0.124	34.5	10	Dissolved	NiOOH@GDL-D
5.	0.1	0.248	34.5	10	Dissolved	NiOOH@GDL-E
6.	1	2.488	-	10	Not	NiOOH@GDL-F
7.	1.5	3.732	_	10	(not used in EC studies) Not dissolved (not used in EC studies)	NiOOH@GDL-G

 Table S1. Optimization information of stable NiOOH modified over GDL.

Catalysts	Synthesis methods	Medium	Overpotentia l (mV)	Tafel (mV/de	Binder	substrate	Ref. no
	incentous		· ((iii + / uc c)			no
Au/NiO _x	Sputtering	0.1 M	390 @10 mA	35	-	Gold disc	1
RT		КОН	cm ⁻²				
3D-NiO	Hydrother-	1 M	370 @50 mA	-	Nafion	Glassy	2
	mal	KOH	cm ⁻²			carbon	
2h-Ni/NiO	Solution	1 M	231@10 mA	108	-	Screen	3
SPE	combustio	КОН	cm ⁻²			printed	
	n					graphite	
NiO NFB	Calcinatio-	1 M	322@10 mA	78.8	Nafion	Ni foam	4
	n	KOH	cm ⁻²				
NiO	Dealloying	1 M	356@20 mA	76.73	PTFE	Ni foam	5
		KOH	cm ⁻²				
Ni0-200nm	Chemical	1 M	345@10 mA	48	-	Quartz/Ti/	6
	bath	KOH	cm ⁻²			Au	
	deposition						
NiO	Chemical	1 M	340@20 mA	97	-	Ni foam	7
nanosheets	growth	КОН	cm ⁻²				
0.5 wt%	Nano-	1 M	358@10 mA	33	-		8
Pt/NiO	casting	KOH	cm ⁻²				
Ni-Ni(OH) ₂	Electrodep	1 M	290@10 mA	120	-	Cu foil	9
	-osition	КОН	cm ⁻²				
Ni ₂ .2Fe(O	Electrodep	1 M	298@100 mA	64.3	-	Cu foam	10
H) _x	-osition	KOH	cm ⁻²				
Holey	Etching	1 M	335@10 mA	65	Nafion	Glassy	11
Ni(OH) ₂		KOH	cm ⁻²			carbon	
a-Ni(OH) ₂	Hydrother-	0.1 M	331@10 mA	42	Nafion	Glassy	12
	mal	КОН	cm ⁻²			carbon	
NiOOH@	In-situ	1 M	294@20 mA	30	-	Carbon	This
GDL-B	formation	КОН	cm ⁻²			cloth	work

Table S2. Comparison of OER performance of NiOOH@GDL-B catalyst with other Ni

 oxide catalyst in terms of methodology, overpotential, Tafel slope and binder.

Table S3. Comparison of OER performance of NiOOH@GDL-B catalyst with other transition metal based catalyst in terms of methodology, overpotential, Tafel slope and binder.

Catalyst s	Synthesis methods	Medium	Overpotent -ial	Tafel (mV/ dec)	Binder	Substr- ate	Ref. no.
NiAl-	Hydrother	1 M KOH	314@10mA	93	-	Ni foam	13
LDH/NF	mal		cm ⁻²				
NiFe-	Solvother	1 M KOH	250@10 mA	31	-	Glassy	14
LDH/CN	mal		cm ⁻²			carbon	
Т							
Ni ₃ Se ₄	Wet	1 M KOH	370@10 mA	30	Nafion	Carbon	15
	chemical		cm ⁻²			cloth	
	technique						
Со-	Electrodep	1 M	320@100	42	No	Ti plate	16
doped	osition	КОН	mA cm ⁻²		binder		
NiSe ₂							
	Wet	1 M	340@10 mA	78	Nafion	FTO	17
Ni _{0.88} Co ₁ .	chemical	КОН	cm ⁻²				
₂₂ Se	technique						
Ni ₃ Se ₂	Electrodep	0.3 M	310@10 mA	97.1	No	Au-	18
	-osition	КОН	cm ⁻²		binder	coated	
						glass	
						substrate	
Ni-Co-	Solvother-	1 M KOH	300@10 mA	87	No	carbon	19
Se/CFP	mal		cm ⁻²		binder	fiber	
						paper	
						CFP	
NiCo-	Hydrother-	1 M KOH	307@10 mA	68	Nafion	Carbon	20
LDH	mal		cm ⁻²			fiber	
nanoplat						paper	
es							
Ni-Fe-	Solvother-	0.1 M	491@10 mA	23	-	Glassy	21
MoO ₄ -	mal	КОН	cm ⁻²			carbon	
LDH							

В	mation						
@GDL-	transfor	КОН	mA cm ⁻²			cloth	work
NiOOH	In-situ	1 M	294@20	30	-	Carbon	This
NF							
MOFNs/	mal		mA cm ⁻²				
NiCu-	Hydrother-	1 M KOH	309@100	107.2	-	Ni foam	23
LDH/NF							
iFeV-	mal		mA cm ⁻²				
NiVP@N	Hydrother-	1 M KOH	317@100	83	-	Ni foam	22

References

- H. Radinger, P. Connor, S. Tengeler, R. W. Stark, W. Jaegermann and B. Kaiser, *Chem. Mater.*, 2021, 33, 8259–8266.
- D. Takimoto, S. Hideshima and W. Sugimoto, ACS Appl. Nano Mater., 2021, 4, 8059– 8065.
- N. Srinivasa, J. P. Hughes, P. S. Adarakatti, C. Manjunatha, S. J. Rowley-Neale, S. Ashoka and C. E. Banks, *RSC Adv.*, 2021, 11, 14654–14664.
- V. D. Silva, T. A. Simões, J. P. F. Grilo, E. S. Medeiros and D. A. Macedo, *J. Mater. Sci.*, 2020, 55, 6648–6659.
- 5 X. Ren, Y. Zhai, Q. Zhou, J. Yan and S. Liu, J. Energy Chem., 2020, 50, 125–134.
- 6 S. Cosentino, M. Urso, G. Torrisi, S. Battiato, F. Priolo, A. Terrasi and S. Mirabella, *Mater. Adv.*, 2020, **1**, 1971–1979.
- D. Jia, H. Gao, L. Xing, X. Chen, W. Dong, X. Huang and G. Wang, *Inorg. Chem.*, 2019, 58, 6758–6764.

- 8 C. Lin, Y. Zhao, H. Zhang, S. Xie, Y. F. Li, X. Li, Z. Jiang and Z. P. Liu, *Chem. Sci.*, 2018, 9, 6803–6812.
- 9 M. Y. Gao, C. B. Sun, H. Lei, J. R. Zeng and Q. B. Zhang, *Nanoscale*, 2018, 10, 17546–17551.
- 10 T. Zhou, Z. Cao, P. Zhang, H. Ma, Z. Gao, H. Wang, Y. Lu, J. He and Y. Zhao, Sci. Rep., 2017, 7, 46154.
- 11 X. Kong, C. Zhang, S. Y. Hwang, Q. Chen and Z. Peng, *Small*, 2017, **13**, 1700334.
- 12 M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang and Y. Yan, J. Am. Chem. Soc., 2014, 136, 7077–7084.
- L. Feng, Y. Du, J. Huang, L. Cao, L. Feng, Y. Feng, Q. Liu, D. Yang and K. Kajiyoshi, Sustain. Energy Fuels, 2020, 4, 2850–2858.
- M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei and
 H. Dai, J. Am. Chem. Soc., 2013, 135, 8452–8455.
- S. Anantharaj, E. Subhashini, K. C. Swaathini, T. S. Amarnath, S. Chatterjee, K. Karthick and S. Kundu, *Appl. Surf. Sci.*, 2019, 487, 1152–1158.
- 16 T. Liu, A. M. Asiri and X. Sun, *Nanoscale*, 2016, **8**, 3911–3915.
- D. V. Shinde, L. De Trizio, Z. Dang, M. Prato, R. Gaspari and L. Manna, *Chem. Mater.*, 2017, **29**, 7032–7041.
- 18 A. T. Swesi, J. Masud and M. Nath, *Energy Environ. Sci.*, 2016, 9, 1771–1782.
- 19 K. Ao, J. Dong, C. Fan, D. Wang, Y. Cai, D. Li, F. Huang and Q. Wei, ACS Sustain. Chem. Eng., 2018, 6, 10952–10959.

- 20 C. Yu, Z. Liu, X. Han, H. Huang, C. Zhao, J. Yang and J. Qiu, *Carbon N. Y.*, 2016, 110, 1–7.
- 21 K. Nejati, S. Davari, A. Akbari, K. Asadpour-Zeynali and Z. Rezvani, *Int. J. Hydrogen Energy*, 2019, **44**, 14842–14852.
- X. Zou, X. Wei, W. Bao, J. Zhang, P. Jiang and T. Ai, *Int. J. Hydrogen Energy*, 2021, 46, 32385–32393.
- X. Zheng, X. Song, X. Wang, Z. Zhang, Z. Sun and Y. Guo, New J. Chem., 2018, 42, 8346–8350.