Supporting Information: Stabilization of Ammonium Borohydride in Solid Solutions of NH₄BH₄-MBH₄ (M = K, Rb, Cs)

Jakob B. Grinderslev*, Torben R. Jensen*

^aInterdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

*Corresponding authors: Dr. Jakob B. Grinderslev (jakobg@inano.au.dk) and Prof. Torben R. Jensen (trj@chem.au.dk)

Figure S1. Rietveld refinement of SR PXD data of cryomilled NH₄BH₄, measured at T = 0 °C, $\lambda = 0.9938$ Å, showing experimental (red circles) and calculated (black line) PXD patterns, and a difference plot below (blue line). Tick marks: (blue) *ortho*-[(NH₃)₂BH₂]BH₄ (74 wt%), (red) NH₄BH₄ (26 wt%). Final discrepancy factors: R_p = 0.378 %, R_{wp} = 0.540 % (not corrected for background), R_p = 12.6 %, R_{wp} = 10.5 % (Conventional Rietveld R-factors), R_{Bragg}(*ortho*-[(NH₃)₂BH₂]BH₄) = 9.29 %, R_{Bragg}(NH₄BH₄) = 1.95 % and global $\chi^2 = 73.2$

Figure S2. Rietveld refinement of SR PXD data of Rb31 measured at T = -21 °C, $\lambda = 0.825775$ Å, showing experimental (red circles) and calculated (black line) PXD patterns, and a difference plot below (blue line). Tick marks: (blue) (NH₄)_{0.52}Rb_{0.48}BH₄ (77.4 wt%), (red) *ortho*-[(NH₃)₂BH₂]BH₄ (22.6 wt%). Final discrepancy factors: R_p = 2.18 %, R_{wp} = 3.38 % (not corrected for background), R_p = 10.4 %, R_{wp} = 8.66 % (Conventional Rietveld R-factors), R_{Bragg}((NH₄)_{0.54}Rb_{0.46}BH₄) = 2.33 %, R_{Bragg}([(NH₃)₂BH₂]BH₄) = 19.4 % and global $\chi^2 = 68.0$

Figure S3. Rietveld refinement of SR PXD data of Cs31 measured at T = -22 °C, $\lambda = 0.82646$ Å, showing experimental (red circles) and calculated (black line) PXD patterns, and a difference plot below (blue line). Tick marks: (blue) (NH₄)_{0.45}Cs_{0.55}BH₄ (79.3 wt%), (red) *ortho*-[(NH₃)₂BH₂]BH₄ (20.7 wt%). Final discrepancy factors: R_p = 1.11 %, R_{wp} = 1.78 % (not corrected for background), R_p = 7.71 %, R_{wp} = 6.22 % (Conventional Rietveld R-factors), R_{Bragg}((NH₄)_{0.45}Cs_{0.55}BH₄) = 0.864 %, R_{Bragg}([(NH₃)₂BH₂]BH₄) = 11.2 % and global $\chi^2 = 14.7$

Figure S4. Selected SR PXD data of K13 heated from T = -22 to 100 °C ($\Delta T/\Delta t = 5$ °C/min, p(Ar) = 1 bar, $\lambda = 0.825775$ Å). The two solid solutions merge upon heating.

Figure S5. In situ SR PXD of Rb31 at Diamond, heated from T = -20 to 160 °C ($\Delta T/\Delta t = 5$ °C/min, p(Ar) = 1 bar, $\lambda = 0.82646$ Å). Symbols: Black circle: *ortho*-[(NH₃)₂BH₂]BH₄, grey circle: *tetra*-[(NH₃)₂BH₂]BH₄, grey/black square: (NH₄)_xRb_{1-x}BH₄, grey square: RbBH₄. The dotted lines show the polymorphic transition from *ortho*- to *tetra*-[(NH₃)₂BH₂]BH₄ ($T \sim 48$ °C) and the decomposition of *tetra*-[(NH₃)₂BH₂]BH₄ ($T \sim 96$ °C).

Figure S6. In situ SR PXD of Cs31 at Diamond, heated from T = -20 to 160 °C ($\Delta T/\Delta t = 5$ °C/min, p(Ar) = 1 bar, $\lambda = 0.82646$ Å). Symbols: Black circle: *ortho*-[(NH₃)₂BH₂]BH₄, grey circle: *tetra*-[(NH₃)₂BH₂]BH₄, grey/black square: (NH₄)_xCs_{1-x}BH₄, grey square: CsBH₄. The dotted lines show the polymorphic transition from *ortho*- to *tetra*-[(NH₃)₂BH₂]BH₄ ($T \sim 48$ °C) and the decomposition of *tetra*-[(NH₃)₂BH₂]BH₄ ($T \sim 96$ °C).

Figure S7. SR PXD and FWHM values of Cs31 at T = -22 °C, 20 °C and 90 °C, $\lambda = 0.82646$ Å.

Figure S8. TG-DSC-MS of Rb11 in the temperature range T = 30 to 400 °C ($\Delta T / \Delta t = 5$ °C/min).

Figure S9. TG-DSC-MS of Rb31 in the temperature range T = 30 to 400 °C ($\Delta T / \Delta t = 5$ °C/min).

Figure S10. TG-DSC-MS of Cs11 in the temperature range T = 30 to 400 °C ($\Delta T/\Delta t = 5$ °C/min).

Figure S11. TG-DSC-MS of Cs31 in the temperature range T = 30 to 400 °C ($\Delta T/\Delta t = 5$ °C/min).