Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Al-Pt compounds catalyzing the oxygen evolution reaction

Ana María Barrios Jiménez, Olga Sichevych, Ioannis Spanos, Simone G. Altendorf, Alim Ormeci, Iryna Antonyshyn*

Figure S1. QTAIM charges of Pt atoms as function of Al content in different Al-Pt compounds. The values are taken from [1], with exception of those for rt-AlPt (calculated in this work). The multiple points of same colour represent the different Pt atoms in the crystal structure.

Figure S2. Cyclic voltammograms for the Al-Pt compounds and elemental Pt: 6^{th} (*dashed*) and 50^{th} (*solid*) cycles are shown.

Figure S3. Chronopotentiometry for Al_4Pt at current density of 10 mA cm⁻².

Figure S4. Chronopotentiometry for $Al_{21}Pt_8$ at current density of 10 mA cm⁻².

Figure S5. Linear sweep voltammograms with the Al-Pt compounds as anode materials: a) initial (*solid lines*) and after the cyclic voltammetry (*dashed lines*), and b) after one (*solid lines*) and two hours (*dashed lines*) of chronopotentiometry at the current density of 10 mA cm⁻². Insets: enlargement of linear sweep voltammograms in the region from 0 to 20 mA cm⁻². The *orange* curve (a) represents initial LSV with Al₄Pt electrode.

Figure S6. XPS spectra of the Pt 4*f*, Al 2*s*, O 1*s* core levels and valence band for the Al₄Pt compound after 200 s of chronopotentiometry at current density of 10 mA cm⁻².

Figure S7. Normalized XPS spectra of the Al 2*s* and O 1*s* core levels for the selected Al-Pt compounds after 2 h of chronopotentiometry at current density of 10 mA cm⁻².

Compound	<i>T</i> , ⁰C	<i>t</i> , days
rt-AlPt ₃	1000	35
Al ₃ Pt ₅	1000	35
rt-AlPt	1000	21
Al ₃ Pt ₂	1000	21
Al ₂ Pt	1000	26
$Al_{21}Pt_8$	600	28
	1000	14
Al ₄ Pt	600	28
	780	14

Table S1. Experimental details on homogenization annealing of Al-Pt compounds.

Table S2. SPS densification of the Al-Pt sample

Compound	SPS conditions		
Compound	$T_{\rm max}$, °C	t, min	P, MPa
Pt	1200	10	80
rt-AlPt ₃	1000	10	80
Al ₃ Pt ₅	1000	3	80
rt-AlPt	1000	3	80
Al ₃ Pt ₂	1000	5	80
Al ₂ Pt	1000	10	80
$Al_{21}Pt_8$	900	10	80
Al ₄ Pt	700	-	80

Table S3. Lattice parameters of the Al-Pt intermetallic compounds.

Compound	Structure	Space group	Latti	ce parameto	ers, Å
Compound	type		а	b	С
rt-AlPt ₃	GaPt ₃	P4/mbm	5.4655(3)	а	7.8005(7)
Al ₃ Pt ₅	Ge ₃ Rh ₅	Pbam	5.4143(6)	10.732(1)	3.9636(5)
rt-AlPt	FeSi	<i>P</i> 2 ₁ 3	4.8656(1)	а	а
Al ₃ Pt ₂	Ni ₂ Al ₃	$P\overline{3}m1$	4.2050(2)	а	5.1721(2)
Al ₂ Pt	anti-CaF ₂	$Fm^{3}m$	5.9243(2)	а	а
$Al_{21}Pt_8$	$Al_{21}Pt_8$	$I4_{1}/a$	12.9531(2)	а	10.6667(3)
Al ₄ Pt	Al ₄ Pt	<i>P</i> 3 <i>c</i> 1	13.0769(2)	a	9.6367(3)

Compound	<i>C</i> (Al), mg L ⁻¹
rt-AlPt ₃	< 0.001
Al ₃ Pt ₅	0.9
rt-AlPt	0.12
Al ₃ Pt ₂	< 0.001
Al ₂ Pt	0.23
$Al_{21}Pt_8$	3.32
Al ₄ Pt	11.39

Table S4. The concentrations of Al in the electrolyte (C, mg L⁻¹) after 2h CP experiments with various Al-Pt compounds

Table S5. Pt 4*f* core levels positions for the Al-Pt intermetallic compounds.*

	Binding energy, eV		
Compound [–]	Pt $4f_{5/2}$	Pt 4 <i>f</i> _{7/2}	
Pt	74.2	70.9	
rt-AlPt ₃	74.5	71.2	
Al ₃ Pt ₅	75.3	72.0	
rt-AlPt	75.2	71.9	
Al ₃ Pt ₂	75.6	72.3	
Al ₂ Pt	75.6	72.3	
$Al_{21}Pt_8$	76.1	72.8	
Al ₄ Pt	76.1	72.8	

*Taken from HAXPES data [2] and estimated at maximum peak intensity.

References:

- Baranov, A., Kohout, M., Wagner, F.R., Grin, Y., Bronger, W. // Z. Kristallogr. 2007, 222, 527-531.
- [2] I. Antonyshyn, O. Sichevych, U. Burkhardt, A.M. Barrios Jiménez, D. Takegami, A. Melendez-Sans, Y.-F. Liao, K.-D. Tsuei, D. Kasinanthan and A. Ormeci, *submitted*.