Electronic Supplementary Information (ESI)

Selective recognition of Hg²⁺ ions in aqueous solution by a Cd^{II}-based metal-organic framework with good stability and vacant coordination sites

Xiao-Qin Cao,^a Wei-Peng Wu,^a Qiang Li,^a Teng-Fei Zheng,^a Yong-Qiang Chen,^b* Jing-Lin Chen,^a Sui-Jun Liu,^a* and He-Rui Wen^a

^aSchool of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
^bDepartment of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, Shanxi Province, P.R. China

*Corresponding authors. E-mail: sjliu@jxust.edu.cn (S.-J. Liu), chenyongqiang@jzxy.edu.cn (Y.-Q. Chen)

Complex	JXUST-28
formula	$C_{18}H_{12}N_6O_6S_2Cd$
M _r	584.82
<i>T</i> (K)	293(2)
crystal system	Triclinic
space group	$P^{\overline{1}}$
a (Å)	10.1318(3)
<i>b</i> (Å)	10.4983(3)
<i>c</i> (Å)	10.9116(3)
α (°)	105.487(1)
β (°)	97.662(1)
γ (°)	99.918(1)
$V(Å^3)$	1082.09(5)
Ζ	2
F(000)	572.0
$D_{\text{calc}} (\text{g cm}^{-3})$	1.783
$\mu \text{ (mm}^{-1}\text{)}$	1.251
Reflections collected/unique	13525/3779
R _{int}	0.0177
$R_1^{a/w}R_2^{b}$ [I>2 σ (I)]	0.0357/0.1074
$R_1^{a/w}R_2^{b}$ (all data)	0.0382/0.1099
GOF on F ²	1.086

 Table S1. Crystal data and structure refinements for JXUST-28.

 ${}^{a}R_{1} = \Sigma(||F_{0}| - |F_{C}||) / \Sigma \overline{|F_{0}|} \cdot {}^{b}wR_{2} = [\Sigma w(|F_{0}|^{2} - |F_{C}|^{2})^{2} / (\Sigma w|F_{0}|^{2})^{2}]^{1/2}.$

<u> </u>		a 11 a a	2 (12(1)
CdI—OI	2.239(3)	Cd1—O2	2.648(4)
Cd1—N1 ⁱ	2.299(4)	Cd1—O4 ⁱⁱ	2.345(3)
Cd1—N4	2.301(4)	O3—Cd1 ^v	2.499(3)
Cd1—O3 ⁱⁱⁱ	2.418(3)	O3—Cd1 ⁱⁱⁱ	2.418(3)
Cd1—O3 ⁱⁱ	2.499(3)	N1—Cd1 ^{iv}	2.299(4)
O1—Cd1—N1 ⁱ	89.38(15)	N1 ⁱ —Cd1—O2	95.10(15)
O1—Cd1—O2	52.29(12)	N1 ⁱ —Cd1—O4 ⁱⁱ	94.83(13)
O1—Cd1—O4 ⁱⁱ	140.82(12)	N1 ⁱ —Cd1—N4	176.36(14)
O1—Cd1—N4	93.61(15)	N1 ⁱ —Cd1—O3 ⁱⁱⁱ	89.20(13)
O1—Cd1—O3 ⁱⁱ	165.16(12)	N1 ⁱ —Cd1—O3 ⁱⁱ	86.44(13)
O1—Cd1—O3 ⁱⁱⁱ	87.64(12)	N4—Cd1—O2	88.37(15)
O4 ⁱⁱ —Cd1—O2	88.53(11)	N4—Cd1—O4 ⁱⁱ	84.16(13)
O4 ⁱⁱ —Cd1—O3 ⁱⁱ	53.86(11)	N4—Cd1—O3 ⁱⁱⁱ	88.85(13)
O4 ⁱⁱ —Cd1—O3 ⁱⁱⁱ	131.27(11)	N4—Cd1—O3 ⁱⁱ	90.16(13)
O3 ⁱⁱⁱ —Cd1—O2	139.52(11)	O3 ⁱⁱⁱ —Cd1—O3 ⁱⁱ	78.08(12)
O3 ⁱⁱ —Cd1—O2	142.29(11)		

Table S2. Selected bond lengths (Å) and angles (°) for JXUST-28^a

^aSymmetry codes: (i) *x*-1, *y*, *z*-1; (ii) *x*, *y*-1, *z*; (iii) -*x*, -*y*+2, -*z*; (iv) *x*+1, *y*, *z*+1; (v) *x*,

y+1, *z*.

		•		
ion	label	shape	sym	distortion(τ)
	HP-7	Heptagon	$D_{7\mathrm{h}}$	30.173
	HPY-7	Hexagonal pyramid	C_{6v}	21.608
	PBPY-7	Pentagonal bipyramid	$D_{5\mathrm{h}}$	2.030
Cd1	COC-7	Capped octahedron	C_{3v}	9.042
	CTPR-7	Capped trigonal prism	$C_{2\mathrm{v}}$	6.911
	JPBPY-7	Johnson pentagonal bipyramid J13	$D_{5\mathrm{h}}$	4.857
	JETPY-7	Johnson elongated triangular pyramid J7	$C_{3\mathrm{v}}$	20.558

Table S3. SHAPE analysis of Cd^{II} ion in **JXUST-28**.

Materials	Metal Ion	Testing condition	Stability	Ref.
NH ₂ -MIL-53(Al)	Al(III)	pH = 1-14 (8 h)	acid-base stability	S1
AH-COF		pH = 3-13 solvents (CHCl ₃ , THF, DMF, DMSO, acetone, H ₂ O)	acid-base stability thermal stability (300 °C) solvent stability	S2
$\{[Zn(L)(A)] \cdot DMF\}_n$	Zn(II)	pH = 3-11 organic solvents (EtOH, acetone, MeOH, MeCN, THF, DMF, DMA, 1,4-dioxane) (12h)	water stability thermal stability (300 °C) organic solvent stability acid base stability	S3
Zn-TPTC	Zn(II)		thermal stability (350 °C)	S4
Tb(TATAB)·(DMF) ₄ (H ₂ O) (MeOH) _{0.5}	Tb(III)		water stability	S5
UiO-66@Butyne	Zr(IV)	H ₂ O, acetone, benzene, DMF (24 h)	solvent stability	S6
{[Ni1.5(L)(4,4'- azobpy)(H ₂ O)]·6.5H ₂ O} _n	Ni(II)	pH = 1-14 (48 h), solvents (DMF, CH ₃ CN, THF, CH ₂ Cl ₂ , CH ₃ COCH ₃ , H ₂ O, CH ₃ CN) (48 h)	solvent stability acid-base stability	S7
RuUiO-67	Zr(IV)		chemical stability	S 8
$Tb_{0.6}Eu_{0.4}$ -bop nanosheets	Ln(III)		thermal stability (460 °C) chemical stability	S9
TMU-31, TMU-32	Zn(II)	water-stability (3 days)	water-stability	S10
Zn-MOF	Zn(II)	pH = 3-7 (24 h)	acid-base stability	S11
JXUST-28	Cd(II)	boiling water (5 d) pH = 2-12 (24 h) solvents (CH ₂ Cl ₂ , DMF, DMAc, MeOH, THF, MeCN, EtOH, H ₂ O and acetone) (24 h)	thermal stability (370 °C) boiling water stability solvent stability acid-base stability	This work

Table S4. The summary of the stability of some representative materials for the recognition and removal of Hg^{2+} .

Sensors	Limit of detection (LOD)	Ref.
NH ₂ -MIL-53(Al)	1.5×10 ⁻⁹ M	S1
RuUiO-67	5.0×10 ⁻⁵ M	S8
Sm-MOF	8.7×10 ⁻⁹ M	S12
Al-MIL-53-NH ₂	7.56×10 ⁻⁶ M	S13
$[Zn_2(bbmb)_2(tdc)_2] \cdot 2H_2O$	1.9×10 ⁻⁷ M	S14
$\{[Zn_2(1,4\text{-bpyvna})(1,3,5\text{-BTC})(OH)] \cdot H_2O\}_n$	2.9×10 ⁻⁷ M	S15
TMU-34(-2H)	1.8×10 ⁻⁶ M	S16
${[Cd(BIPA)(IPA)] \cdot DMF}_n$	5.0×10 ⁻⁷ M	S17
${[Co_2(L)(hfpd)(H_2O)] \cdot 1.75H_2O}_n$	4.0×10 ^{−6} M	S18
Eu ³⁺ /CDs@MOF-253	6.5×10 ⁻⁸ M	S19
PCN-221	1.0×10 ⁻⁸ M	S20
JXUST-28	9.7×10 ^{−8} M	This work

 Table S5. Comparison of different MOF materials for detecting Hg²⁺

Fig. S1 IR spectra of JXUST-28 and JXUST-28@ Hg^{2+} at room temperature.

(b)

Fig. S2 (a) The simulated and experimental PXRD patterns of **JXUST-28** soaked in common organic solvents for 24 hours; (b) the simulated and experimental PXRD patterns of **JXUST-28** soaked in the aqueous solution with pH values of 1, 13 and 14 for 24 hours.

Fig. S3 The TGA curve of JXUST-28 under N_2 atmosphere.

(a)

⁽b)

Fig. S4 (a) Solid-state emission spectra of BIBT and **JXUST-28**; (b) the emission spectra of **JXUST-28** in aqueous, DMA and MeOH solutions at room temperature.

Fig. S5 CIE chromaticity diagram displaying the color coordinate of JXUST-28.

Fig. S6 The luminescence decay curve of JXUST-28.

Fig. S7 (a) UV-vis absorption spectra of **JXUST-28** and **JXUST-28**@Hg²⁺; (b) UV-vis absorption spectra of **JXUST-28** upon the addition of other metal ions.

Fig. S8 The possible weak interactions between $JXUST\mathchar`-28$ and ${\rm Hg}^{2+}.$

References

S1. L. Zhang, J. Wang, T. Du, W. Zhang, W. Zhu, C. Yang, T. Yue, J. Sun, T. Li and J. Wang, *Inorg. Chem.*, 2019, **58**, 12573-12581.

S2. Y. X. Yu, G. L. Li, J. H. Liu and D. Q. Yuan, Chem. Eng. J., 2020, 401, 126139.

S3. X. J. Xue, Z. C. Shao, Y. Cui, T. Y. Wen, J. S. Chen, K. S. Geng, L. W. Mi and H. W. Hou, *Cryst. Growth Des.*, 2022, **22**, 1412-1420.

S4. Y. T. Wan, D. N. Zou, Y. J. Cui, Y. Yang and G. D. Qian, *J. Solid State Chem.*, 2018, **266**, 70-73.

S5. T. Xia, T. Song, G. Zhang, Y. Cui, Y. Yang, Z. Wang and G. Qian, *Chem.-Eur. J.*, 2016, **22**, 18429-18434.

S6. P. Samanta, A. V. Desai, S. Sharma, P. Chandra and S. K. Ghosh, *Inorg. Chem.*, 2018, **57**, 2360-2364.

S7. Z. C. Shao, C. Huang, J. Dang, Q. Wu, Y. Y. Liu, J. Ding and H. W. Hou, *Chem. Mater.*, 2018, **30**, 7979-7987.

S8. Z. Wang, J. Yang, Y. Li, Q. Zhuang and J. Gu, *Dalton Trans.*, 2018, 47, 5570-5574.

S9. X. Wang, Z. Jiang, C. Yang, S. Zhen, C. Huang and Y. Li, J. Hazard. Mater., 2022, 423, 126978.

S10. A. Hakimifar and A. Morsali, Inorg. Chem., 2019, 58, 180-187.

S11. Z. Huang, M. Zhao, C. Wang, S. Wang, L. Dai and L. Zhang, *ACS Appl. Mater. Inter.*, 2020, **12**, 41294-41302.

S12. N. Wu, H. Guo, R. Xue, M. Wang, Y. Cao, X. Wang, M. Xu and W. Yang, *Colloid. Surface. A.*, 2021, **618**, 126484

S13. W. Abd El-Fattah, E. S. Al-Farraj, N. B. Hamadi, A. Alharbi and A. Shahat, *ACS Omega*, 2022, **7**, 17483-17491.

S14. W.-C. Kang, C. Han, D. Liu and G.-H. Cui, *Inorg. Chem. Commun.*, 2019, **106**, 81-85.

S15. W.-X. Li, H.-X. Li, H.-Y. Li, M.-M. Chen, Y.-X. Shi and J.-P. Lang, *Cryst. Growth. Des.*, 2017, **17**, 3948-3959.

S16. S. A. A. Razavi, M. Y. Masoomi and A. Morsali, *Inorg. Chem.*, 2017, 56, 9646-9652.

S17. Z. J. Wang, L. J. Han, X. J. Gao and H. G. Zheng, *Inorg. Chem.*, 2018, **57**, 5232-5239.

S18. Y.-Q. Su, Y.-H. Qu, L. Fu and G.-H. Cui, *Inorg. Chem. Commun.*, 2020, **118**, 108013.

S19. X.-Y. Xu and B. Yan, J. Mater. Chem. C, 2016, 4, 1543-1549.

S20. E. Moradi, R. Rahimi and V. Safarifard, J. Solid State Chem., 2020, 286, 121277.