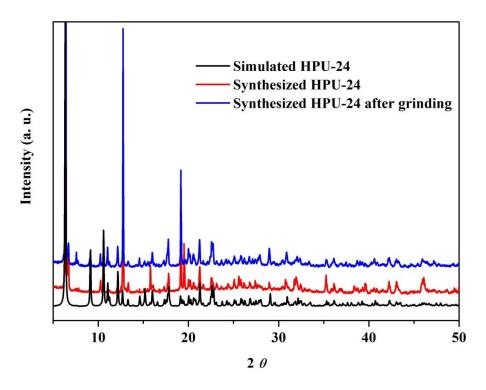
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

## A Dual-function $[Ru(bpy)_3]^{2+}$ Encapsulated Metal-Organic Framework for Ratiometric $Al^{3+}$ detection and anticounterfeiting application

Huijun Li\*, Yanan Wang, Fengjiao Jiang, Manman Li, Zhouqing Xu\*


Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China, <u>lihuijunxgy@hpu.edu.cn</u>; <u>zhqxu@hpu.edu.cn</u>.

## **Materials Characterization Section**

Table S1. Crystal data for HPU-24.

| Complex                                 | HPU-24                    |
|-----------------------------------------|---------------------------|
| Formula                                 | $C_{33}H_{29}Cd_2NO_{12}$ |
| formula weight, fw                      | 856.37                    |
| Temperature, $T[K]$                     | 193.00                    |
| crystal system                          | monoclinic                |
| space group                             | $P 2_1/c$                 |
| a [Å]                                   | 14.0828(16)               |
| b [Å]                                   | 10.9927(12)               |
| c [Å]                                   | 23.566(3)                 |
| α [°]                                   | 90                        |
| β [°]                                   | 98.544(5)                 |
| γ [°]                                   | 90                        |
| $V [Å^3]$                               | 3607.7(7)                 |
| Z                                       | 4                         |
| $\rho [g cm^{-3}]$                      | 1.577                     |
| μ [mm <sup>-1</sup> ]                   | 6.769                     |
| $\theta$ range                          | 3.300- 61.010             |
| F(000)                                  | 1704                      |
| goodness-of-fit, GOF                    | 1.067                     |
| $R_1^a$ [I > 2 $\sigma$ (I)]            | 0.0708                    |
| wR <sub>2</sub> <sup>b</sup> (all data) | 0.1762                    |

$${}^{a}R_{1} = \left| \left| F_{o} \right| - \left| F_{c} \right| \right| / \left| F_{o} \right|. \, {}^{b}wR_{2} = \left[ w(\left| F_{o}^{2} \right| - \left| F_{c}^{2} \right|)^{2} / w \left| F_{o}^{2} \right|^{2} \right]^{1/2}.$$



**Figure S1** PXRD patterns of simulated **HPU-24**, synthesized **HPU-24** and synthesized **HPU-24** after grinding.

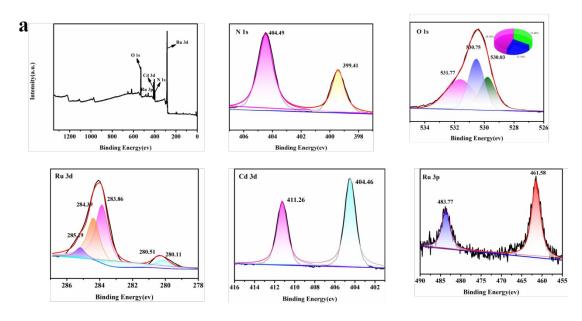



Figure S2 XPS results of HPU-24@Ru.

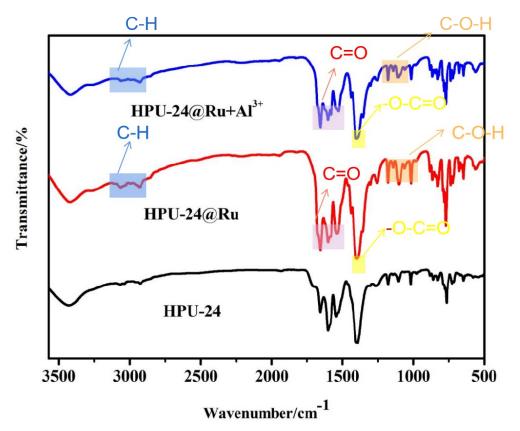
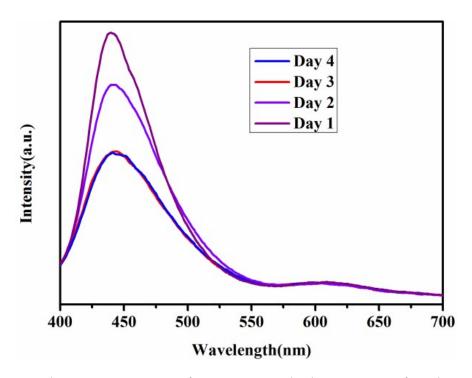




Figure S3 The IR spectra of different products.



Figure S4 TGA analysis of HPU-24 and HPU-24@Ru.



**Figure S5** Fluorescence spectra of **HPU-24@Ru** in the water over four days under the excitation of 365 nm.

Table S2. Loading capacity of  $Ru(bpy)_3^{2+}$  in HPU-24@Ru .

| Inductively Coupled Plasma-Atomic Emission Spectrometry | Ru weight amount<br>measure by ICP-AES<br>(mg) | [Ru(bpy) <sub>3</sub> ] <sup>2+</sup> weight amount (mg) | Loading capacity (wt%) |
|---------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------|
| Ru                                                      | 0.011                                          | 0.0697                                                   | 6.51                   |

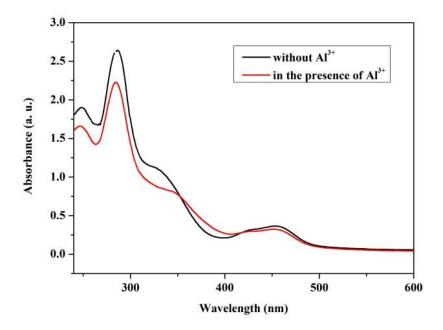
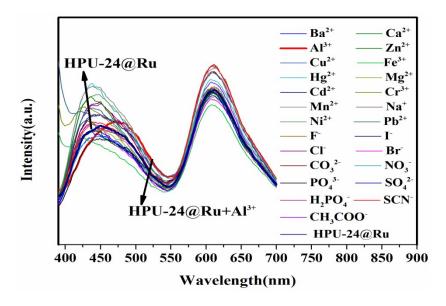
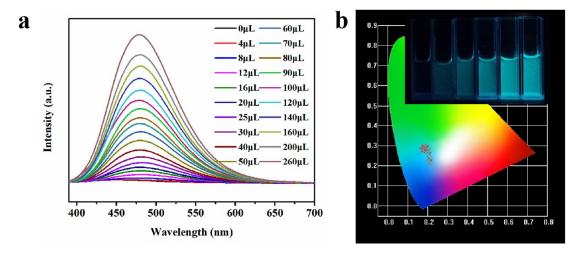





Figure S6 UV-vis spectra of HPU-24@Ru in the absence or presence of Al3+ ions.



**Figure S7** Changes of luminescence intensity at 480 and 610 nm with respect of emission of **HPU-24@Ru** (10 μmol·L<sup>-1</sup>) with Al<sup>3+</sup> in aqueous solution with 50 μL of coexistent metal cations (Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Ba<sup>2+</sup>, Sr<sup>2+</sup>, Zn<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup>, Ni<sup>2+</sup>, Cd<sup>2+</sup>, Mn<sup>2+</sup>, Fe<sup>3+</sup>, Pb<sup>2+</sup>, Ag<sup>+</sup>, Al<sup>3+</sup>, Cr<sup>3+</sup> and Fe<sup>2+</sup>) (Ex = 365 nm).



**Figure S8** (a) Fluorescence sensing performance of **HPU-24** towards Al<sup>3+</sup> ions; (b) the CIE chromaticity diagram of **HPU-24** with 0-260 μL Al<sup>3+</sup> ions under an excitation of 365 nm (inset: the photos showing the corresponding fluorescence color changes triggered by Al<sup>3+</sup> ions).

**Table S3** The performance of different Al<sup>3+</sup> sensors.

| Fluorescent probes                                                              | Detection limit         | Ref |
|---------------------------------------------------------------------------------|-------------------------|-----|
| AX-AuNPs                                                                        | 20 μΜ                   | 52  |
| Eu(OAc) <sub>3</sub> ·4H <sub>2</sub> O                                         | 10 <sup>-4</sup> M      | 8   |
| [Eu <sub>2</sub> (ppda) <sub>2</sub> (npdc)(H <sub>2</sub> O)]·H <sub>2</sub> O | 1.09×10 <sup>-4</sup> M | 53  |