Supporting Information

Ferric ion substitution renders cadmium metal-organic framework derivatives for modulated Li storage based on local oxidation active center

Wei Jiang ${ }^{\text {a,d }}$, Baihui Gao $^{\text {a }}$, Guosong Yan ${ }^{\text {a }}$, Shichong Xu ${ }^{\text {c }}$, Xianyu Chu ${ }^{\text {a }}$, Guangbo Che ${ }^{\text {a,e } \text {, Bo }}$ Liu $^{\text {a, },}$, Ming Lu ${ }^{\text {b,c, },}$, Chunbo Liu ${ }^{\text {a,d,* }}$

${ }^{\text {a }}$ Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
${ }^{b}$ Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, PR China
c Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, the Joint Laboratory of MXene Materials, Jilin Normal University, Changchun 130103, Jilin, PR China
${ }^{d}$ College of Engineering, Jilin Normal University, Siping, 136000, PR China
${ }^{e}$ College of Chemistry, Baicheng Normal University, Baicheng, 137000, P. R. China.
*Corresponding authors.

E-mail addresses:
luming@jlnu.edu.cn (M. Lu), liubo1999@jlnu.edu.cn (B. Liu), chunboliu@jlnu.edu.cn (C. Liu)

1. Figures and Tables

1.1. Crystal data

Crystal data was collected Bruker Smart Apex II CCD diffractometer with graphitemonochromatic $\mathrm{Mo} K \alpha$ radiation $(\lambda=0.71073 \AA$) at room temperature. The structures were solved by direct methods of $S H E L X S$-2014 and refined on F^{2} by full-matrix least-squares using the SHELXL-2014 within WINGX. All the calculations were performed under WINGX program. All non-hydrogen atoms were refined anisotropically, and the hydrogen atoms of organic ligands and water molecules were generated geometrically. The crystallographic data for CdMOF is listed in Table S 1 , selected bond lengths and bond angles are summarized in Table S 2 .

Fig. S1. TEM images of $\mathbf{F e} @$ Cd-MOFD.

Fig. S2. EDX of Fe@Cd-MOFD obtained from TEM.

Fig. S3. EDX of Fe@Cd-MOFD obtained from SEM.

Fig. $\mathbf{S 4}$ (a-e) Capacitive contribution of the $\mathbf{F e @ C d - M O F D}$ from the scan rate of 0.5$10 \mathrm{mV} \mathrm{s}^{-1}$. (f) Contribution ratio of capacitive and diffusion at different scan rates.

To fully investigate the excellent performances of Fe@Cd-MOFD hollow nanostructures in LIBs, the reaction kinetics were analyzed by CV measurements at different scan rates from 0.5 to $10 \mathrm{mV} \mathrm{s}^{-1}$ (Fig. S4). According to previous reports, there is a power law between measured current and scan rate.
$\mathrm{i}=\mathrm{k}_{1} \mathrm{v}+\mathrm{k}_{2} \mathrm{v}^{1 / 2}$
Where k_{1} and k_{2} are the constants at a fixed potential, v is the scan rate. The determination of k_{1} and k_{2} allows calculating the proportion of capacitive contribution $\left(k_{1} v\right)$ or diffused behavior $\left(k_{2} v^{1 / 2}\right)$. Fig. $S 4$ shows that the capacitive contribution
gradually increased from 16.35 to 51.37% with the scan rate increasing from $0.5-10$ $\mathrm{mV} \mathrm{s}^{-1}$.

Table S1 Selected crystallographic data for Cd-MOF.

Compound	$\mathbf{C d}-\mathbf{M O F}$
Formula	$\mathrm{C}_{47} \mathrm{H}_{52} \mathrm{CdN}_{3} \mathrm{O}_{16}$
$M r$	1027.34
Crystal system	Monoclinic
Space group	$P 2_{1} / \mathrm{n}$
$a(\AA)$	$21.479(4)$
$b(\AA)$	$7.9353(16)$
$c(\AA)$	$32.660(6)$
$\alpha\left(^{\circ}\right)$	90
$\beta\left(^{\circ}\right)$	$105.015(4)$
$\gamma\left({ }^{\circ}\right)$	90
$V\left(\AA^{3}\right)$	$5376.6(18)$
Z	4
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.215
$F(000)$	1984
$R_{\text {int }}$	0.0932
GOF on F^{2}	1.012
$R_{1}{ }^{a}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0907
$w R_{2}{ }^{b}($ all data $)$	0.3211
CCDC	2151098

$$
\left.{ }^{a} R_{1}=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| \Sigma\left|F_{o}\right| \cdot{ }^{b} w R_{2}=\left\{\Sigma\left[w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma w\left(F_{o}^{2}\right)^{2}\right]\right\}^{1 / 2} .
$$

Table S2 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for Cd-MOF.

Bond	Distance	Bond	Distance
$\mathrm{Cd}(1)-\mathrm{O}(1)$	$2.3663(39)$	$\mathrm{Cd}(1)-\mathrm{O}(7)$	$2.2692(37)$
$\mathrm{Cd}(1)-\mathrm{O}(2)$	$2.4955(37)$	$\mathrm{Cd}(1)-\mathrm{O}(8)$	$2.5051(41)$

$\mathrm{Cd}(1)-\mathrm{O}(3)$	2.2521(55)	$\mathrm{Cd}(1)-\mathrm{O}(13)$	$2.3045(40)$
$\mathrm{Cd}(1)-\mathrm{O}(4)$	2.4991(24)		
Angle	$\left({ }^{\circ}\right)$	Angle	$\left({ }^{\circ}\right)$
$\mathrm{O}(3)^{\# 1}-\mathrm{Cd}(1)-\mathrm{O}(7)^{\# 2}$	136.0(3)	$\mathrm{O}(3)^{\# 1}-\mathrm{Cd}(1)-\mathrm{O}(7)^{\# 2}$	136.0(3)
$\mathrm{O}(3)^{\# 1}-\mathrm{Cd}(1)-\mathrm{O}(13)$	109.4(3)	$\mathrm{O}(3)^{\# 1}-\mathrm{Cd}(1)-\mathrm{O}(13)$	109.4(3)
$\mathrm{O}(7)^{\# 2}-\mathrm{Cd}(1)-\mathrm{O}(13)$	87.5(3)	$\mathrm{O}(7)^{\# 2}-\mathrm{Cd}(1)-\mathrm{O}(13)$	87.5(3)
$\mathrm{O}(3)^{\# 1}-\mathrm{Cd}(1)-\mathrm{O}(1)$	133.4(3)	$\mathrm{O}(3){ }^{\# 1}-\mathrm{Cd}(1)-\mathrm{O}(1)$	133.4(3)
$\mathrm{O}(7)^{\# 2}-\mathrm{Cd}(1)-\mathrm{O}(1)$	87.8(3)	$\mathrm{O}(7)^{\# 2}-\mathrm{Cd}(1)-\mathrm{O}(1)$	87.8(3)
$\mathrm{O}(13)-\mathrm{Cd}(1)-\mathrm{O}(1)$	82.5(3)	$\mathrm{O}(13)-\mathrm{Cd}(1)-\mathrm{O}(1)$	82.5(3)
$\mathrm{O}(3)^{\# 1}-\mathrm{Cd}(1)-\mathrm{O}(2)$	83.7(3)	$\mathrm{O}(3)^{\# 1}-\mathrm{Cd}(1)-\mathrm{O}(2)$	83.7(3)
$\mathrm{O}(7)^{\# 2}-\mathrm{Cd}(1)-\mathrm{O}(2)$	123.5(3)	$\mathrm{O}(7)^{\# 2}-\mathrm{Cd}(1)-\mathrm{O}(2)$	123.5(3)
$\mathrm{O}(13)-\mathrm{Cd}(1)-\mathrm{O}(2)$	119.8(3)	$\mathrm{O}(13)-\mathrm{Cd}(1)-\mathrm{O}(2)$	119.8(3)
$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(2)$	53.2(2)	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(2)$	53.2(2)
$\mathrm{O}(3){ }^{\# 1}-\mathrm{Cd}(1)-\mathrm{O}(8)^{\# 2}$	101.7(3)	$\mathrm{O}(3)^{\# 1}-\mathrm{Cd}(1)-\mathrm{O}(8)^{\# 2}$	101.7(3)

Symmetry transformations used to generate equivalent atoms: ${ }^{\# 1}-x+1,-y-1,-z{ }^{\# 2}-$ $x+1 / 2, y-1 / 2,-z+1 / 2$ CCDC number : 2151098

Table S3 The EDS data of Fe@Cd-MOFD.

	$\mathrm{wt} \%$	$\mathrm{at} \%$
C	70.39	85.72
O	10.01	9.15
Fe	19.60	5.13

