Supporting Information for

Aggregation-induced emission enhancement (AIEE) of tetrarhenium(I) metallacycles and their application as luminescent sensors for nitroaromatics and antibiotics

Mohammad Nurnabi,^a Shunmugasundaram Gurusamy,^b Jing-Yun Wu,^c Chung-Chou Lee,^a Malaichamy Sathiyendiran,^a Sheng-Ming Huang,^a Che-Hao Chang,^a Ito Chao,^a Gene-Hsiang Lee,^d Shie-Ming Peng,^d Veerasamy Sathish,^e Pounraj Thanasekaran,^{*,f} and Kuang-Lieh Lu^{*,a,g}

^aInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan ^bPG and Research Department of Chemistry, V. O. Chidambaram College, Tuticorin – 628 008, Tamil Nadu, India ^cDepartment of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan ^dDepartment of Chemistry, National Taiwan University, Taipei 107, Taiwan ^eDepartment of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam – 638 401, India ^fDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India ^gDepartment of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan

*To whom correspondence should be addressed. E-mail: <u>ptsekaran.chem@pondiuni.edu.in</u> (P. Thanasekaran) E-mail: kllu@gate.sinica.edu.tw (K.-L. Lu)

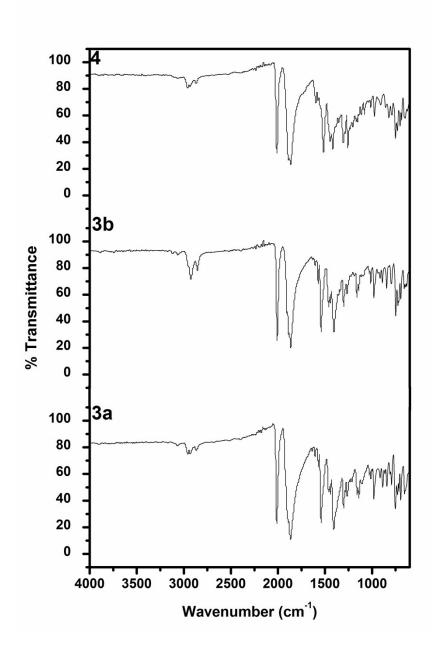
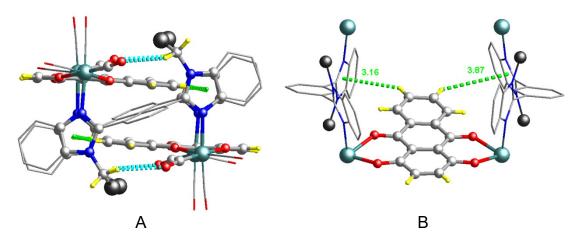



Figure S1. ATR-IR spectra of compounds 3a, 3b and 4.

Figure S2. (A) Side view of the molecular structure of **3a**, showing potential C–H··· π (green dashed lines) and C–H···O=C (cyan dashed lines) interactions. Color scheme: teal, Re; red, O; blue, N; gray, C; yellow, H; dark gray, C₃H₇ group. (B) Highlight of potential C–H··· π (green dashed lines) interactions in **3a** Color scheme: teal, Re; red, O; blue, N; gray, C; yellow, H; dark gray, C₄H₉ groups.

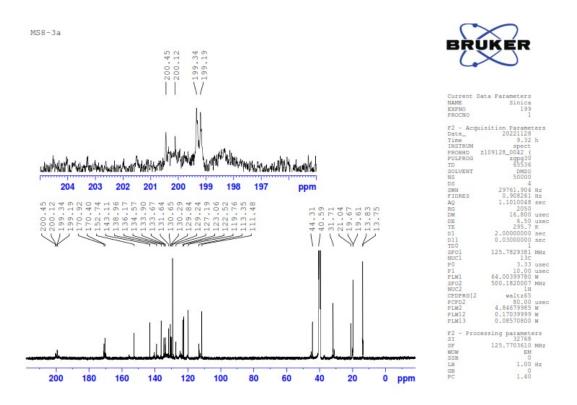


Figure S3. ¹³C NMR spectrum of compound 3a.

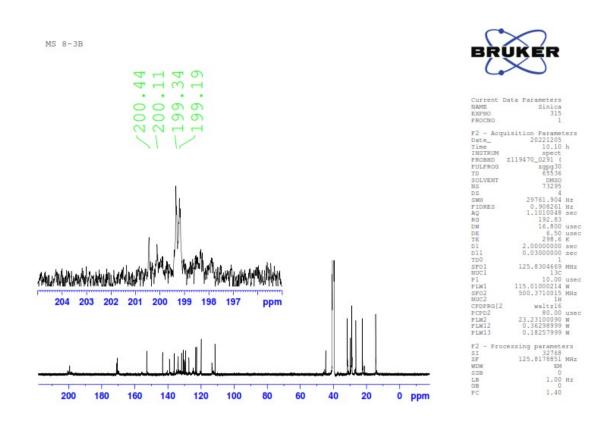


Figure S4. ¹³C NMR spectrum of compound 3b.

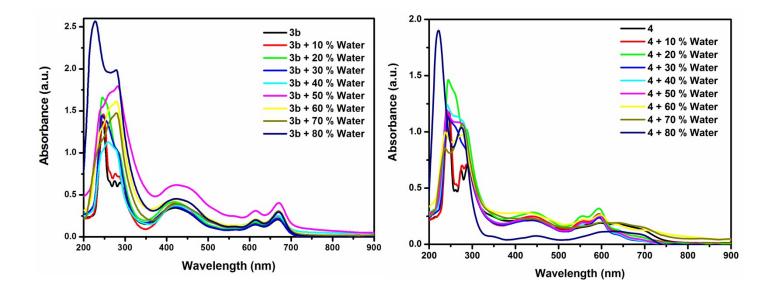
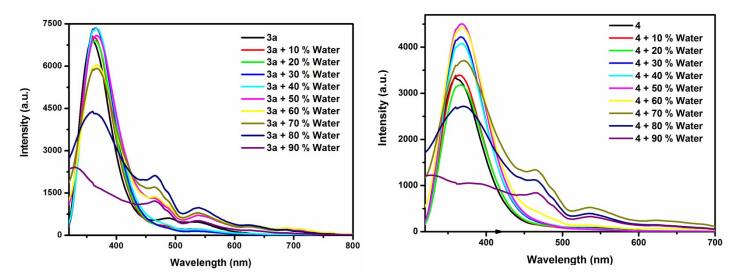



Figure S5. UV–visible spectral changes for compounds 3b and 4 (10 μ M) upon the addition of various water content (0–90%) in H₂O:THF mixture.

Figure S6. Changes in the fluorescence spectra of **3a** and **4** (10 μ M) upon the addition of water (10–90%) to a H₂O:THF mixture ($\lambda_{ex} = 320$ nm)

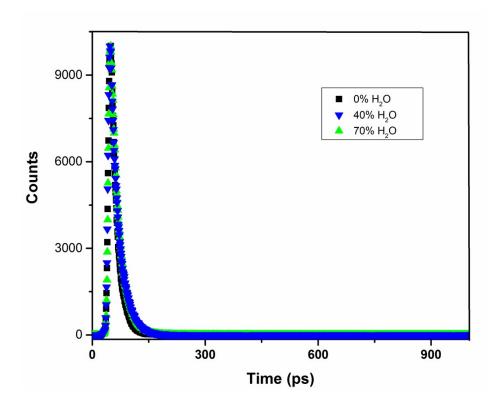


Figure S7. Life-time decay profile of compound 3b in the presence of different water contents (0, 40 & 70%) in THF.

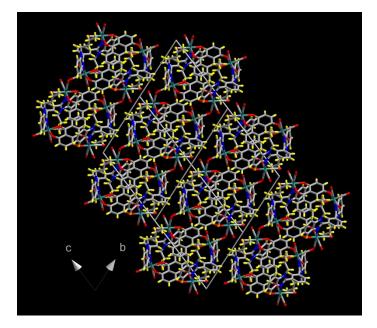
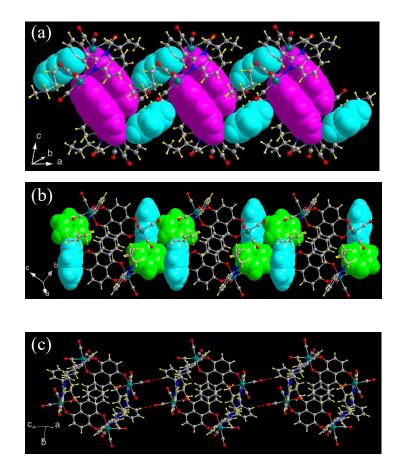



Figure S8. Crystal packing diagram of 3a viewed along the crystallographic *a*-axis.

Figure S9. (a) Highlights of the column-stacking of the tetrarhenium compound **3a** along the crystallographic *a*-axis, assisted by C–H··· π interactions between the phenyl ring of the benzimidazolyl moiety of **1a** (cyan-colored space-filling model) and the dhaq ligand (pink-colored space-filling model). (b) Highlights the C–H··· π interactions between the central benzene ring and the benzimidazolyl moiety of **1a** (cya) in neighboring molecules of **3a**. (c)

The C-H···O=C hydrogen bonds between the central benzene ring of 1a in a molecule and the carbonyl groups of neighboring molecules.

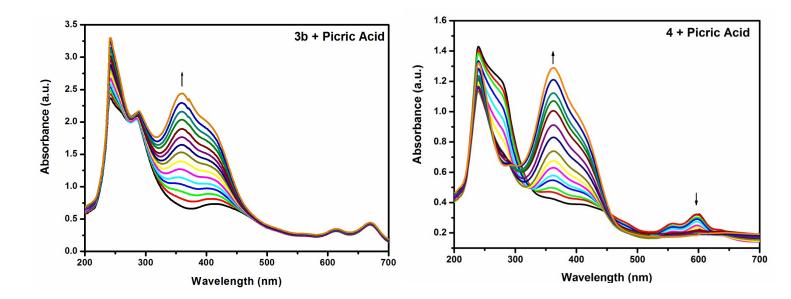


Figure S10. Changes in the absorption spectra of 3b and 4 (10 μ M) upon the addition of PA (0-15 μ M) in 50:50 H₂O:THF mixture.

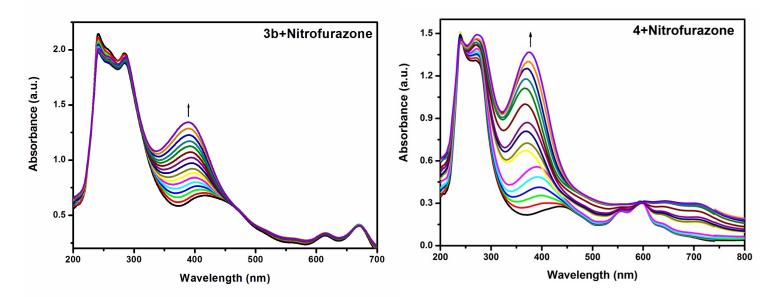


Figure S11. Changes in the absorption spectra of 3b and 4 (10 μ M) upon the addition of nitrofurazone (0–15 μ M) to a 50:50 H₂O:THF mixture.

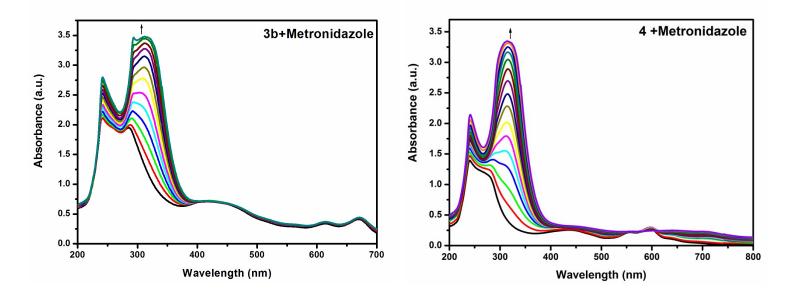


Figure S12. Changes in the absorption spectra of 3b and 4 (10 μ M) upon the addition of metronidazole (0–15 μ M) to a 50:50 H₂O:THF mixture.

	3a	$4 \cdot 3 C_7 H_8$	
formula	C ₉₆ H ₇₂ N ₈ O ₂₀ Re ₄	$C_{117}H_{96}N_8O_{22}Re_4$	
$M_{ m r}$	2402.42	2710.82	
crystal system	triclinic	monoclinic	
space group	$P\overline{1}$	$P2_{1}/n$	
a (Å)	11.5803 (8)	15.7647 (9)	
$b(\mathbf{A})$	13.1966 (8)	14.9159 (8)	
c(Å)	16.1427 (11)	22.4345 (13)	
α (deg)	67.950 (2)	90	
β (deg)	79.118 (2)	90.631 (1)	
$\gamma(\text{deg})$	70.650 (2)	90	
$V(Å^3)$	2151.5 (2)	5275.0 (5)	
Z	1	2	
<i>T</i> (K)	296(2)	150 (2)	
λ (Å)	0.71073	0.71073	
D_{calc} (g/cm ³)	1.854	1.707	
$\mu (\mathrm{mm}^{-1})$	5.687	4.651	
<i>F</i> (000)	1164	2660	
goodness-of-fit	1.042	1.201	
$R1^{a}/WR2^{b} [I > 2\sigma(I)]$	0.0333/0.0800	0.0840/0.1780	
$R1^{a}/wR2^{b}$ (all data)	0.0503/0.0874	0.0968/0.1855	
largest residuals (e Å ⁻³)	1.017/-1.982	6.361/-3.663	
^{<i>a</i>} $R_1 = \sum \left\ F_o \right\ - \left F_c \right\ / \sum \left F_o \right .$ ^{<i>b</i>} $wR_2 = \left\{ \sum \left[w (F_o^2 - F_c^2)^2 \right] / \sum \left[w (F_o^2)^2 \right] \right\}^{1/2}$			

Table S1. Crystallographic Data of 3a and $4.3C_7H_8$

Table S2. Stern-Volmer quenching constant values (K_{sv}, M^{-1}) for the reaction of metallacycles **3b** and **4** by PA and antibiotics.

Compounds	Nitroaromatics & Antibiotics	SV Quenching constant
		$K_{ m sv}({ m M}^{-1})$
3b	Picric acid	2.6591×10^{4}
3b	Metronidazole	3.8889×10^4
3 b	Nitrofurazone	5.9368×10^{4}
4	Picric acid	4.3853×10^{4}
4	Metronidazole	2.6643×10^{4}
4	Nitrofurazone	3.1772×10^{4}