Supporting information

Easy preparation of small crystalline Pd₂Sn nanoparticles in solution at room temperature

Vincent Dardun,^a Tania Pinto,^a Loïc Benaillon,^a Laurent Veyre,^a Jules Galipaud,^{b,c} Clément Camp,^a Valérie Meille, *^d and Chloé Thieuleux*^a

^a Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France

^b Université de Lyon, Ecole Centrale de Lyon, Laboratory of Tribology and System Dynamics, LTDS UMR CNRS 5513, 36 avenue Guy de Collongues, 69134 Ecully Cedex, France

^c Université de Lyon, INSA-Lyon, UCBL, MATEIS UMR CNRS 5510, Villeurbanne, France

^d Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France

<u>ORCID</u>

Vincent Dardun: 0000-0001-8540-2647

Jules Galipaud : 0000-0002-9952-6162

Clément Camp: 0000-0001-8528-0731

Valérie Meille: 0000-0003-2258-9656

Chloé Thieuleux: 0000-0002-5436-2467

Table of contents

Supporting information	S1
Characterization of the Pd and Pd ₂ Sn NPs	S3
Transmission Electron Microscopy (TEM)	S3
XPS	S11
Catalytic Study	S11
NMR study	S11
Chromatogram	S12
TON and TOF assessment	S12
Catalytic tests	S13
References	S14

Characterization of the Pd and Pd2Sn NPs

Transmission Electron Microscopy (TEM)

Figure S1 –Left: STEM-HAADF image (on a copper grid with a carbon lacey) of 1.5 ± 0.3 nm sized palladium nanoparticles synthesized at room temperature with 1.5 equiv. of silane under 4 bars of H₂ in toluene. Right: size distribution of these nanoparticles with the corresponding normal distribution curve.

Figure S2 – Left: STEM-HAADF image (on a copper grid with a carbon lacey) of 1.5 ± 0.3 nm sized palladium nanoparticles synthesized at room temperature with 1.5 equiv. of silane under 4 bars of H₂ in THF. Right: size distribution of these nanoparticles with the corresponding normal distribution curve.

Figure S3 – Left: STEM-HAADF image (on a copper grid with a carbon lacey) of 1.5 ± 0.3 nm sized palladium nanoparticles synthesized at room temperature with 2 equiv. of silane under 4 bars of H₂ in toluene. Right: size distribution of these nanoparticles with the corresponding normal distribution curve.

Figure S4 – Left: STEM-HAADF image (on a copper grid with a carbon lacey) of 1.5 ± 0.3 nm sized palladiumtin nanoparticles synthesized at room temperature with 2 equiv. of tin precursor under 4 bars of H₂ in THF. Right: size distribution of these nanoparticles with the corresponding normal distribution curve.

Element	%Mass	%Atomic
Pd L	63.67	66.16
Sn L	36.33	33.84
Total	100.00	

20nm

Image électronique 1

Element	%Mass	%Atomic
Pd L	60.69	63.27
Sn L	39.31	36.73
Total	100.00	

Element	%Mass	%Atomic
Pd L	61.13	63.69
Sn L	38.87	36.31
Total	100.00	

20nm

Image électronique 1

A "Spectre 1 30nm

Image électronique 1

Element	%Mass	%Atomic
Pd L	62.85	65.37
Sn L	37.15	34.63
Total	100.00	

Element	%Mass	%Atomic
Pd L	64.22	66.69
Sn L	35.78	33.31
Total	100.00	

A [#] Spectre	1		Element Pd L Sn L Total	%Mass 64.54 35.46 100.00	%Atomic 67.00 33.00	1
		60 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			Spectr	e 1
r 100nm Image élect	tronique 1	2 2.5 3 3.5 Pleine échelle 143 cps Curseur	4 4.5 : 4.511 (4 cps	5 5.5	6 6.5 7	keV
B						
"Spec	tre 1		Element Pd L Si K	%Mass 96.99 3.01	%Atomic 89.48 10.52	
		@	Total	100.00	Spectre	1
		S 2 Pleine échelle 86 cps Curseur : 5.	4 198 (3 cps)	5	4 1-16-16-16-16-16-16-16-16-16-16-16-16-16	7 ≈V
20nm Image éle	ctronique 1					

Figure S5 – A) STEM-HAADF-EDS of the palladium-tin nanoparticles (on a copper grid with a carbon lacey) synthesized at room temperature with 2 equiv. of tin precursor under 4 bars of H_2 in THF - B) STEM-HAADF-EDS of the palladium nanoparticles (on a copper grid with a carbon lacey) synthesized at room temperature with 2 equiv. of silane under 4 bars of H_2 in THF.

Crystalline phase determination

		Experimental	Theoretical hexagonal Pd	
D (nm) (h,k,l)	N°1	0.241 (1,0,0)	0.241(1,0,0)	10000
	N°2	0.229 (0,1,1)	0.227 (0,1,1)	001020303-70
	N°3	0.229 (-1,1,1)	0.227 (-1,1,1)	1.4
				- 10 C - 10 C
Angle (°)	N°1	0	0	2 nm
·	N°2	60.7	61.8	and the second second
	N°3	114.6	118.1	NOL SPIRA CAR .

Figure S6 – HRTEM of palladium nanoparticles (on a copper grid with a carbon lacey) synthesized at room temperature with 1.5 equiv. of silane under 4 bars of H₂ with the corresponding Fourier Transform and the attributed planes and angles, compared to hexagonal Pd structure from JCPDS file n°01-072-0710.

		Experimental	Theoretical Pd2Sn alloy	and the second
				A 100000
D (nm) (h,k,l)	N°1	0.215 (0,2,0)	0.216 (0,2,0)	o subscreenes a
	N°2	0.225 (2,1,1)	0.227 (2,1,1)	
	N°3	0.231 (2,-1,1)	0.227 (2,-1,1)	
	N°4	0.133 (4,0,2)	0.133 (4,0,2)	12-59-56-56-5-5-CA
	N°5	0.114 (4,-2,2)	0.113 (4,-2,2)	A STORES IN
	N°6	0.129 (2,-3,1)	0.127 (2,-3,1)	2 mm 5
				6
Angle (°)	Nº1	0	0	
	N°2	58.3	58.2	
	N°3	120.6	121.8	
	Nº4	88.9	90	
	N°5	120.7	121.8	
	N°6	151.0	151.7	

		Experimental	Theoretical Pd2Sn alloy
D (nm) (h,k,l)	N°1	0.218 (0,2,0)	0.216 (0,2,0)
	N°2	0.222 (2,1,1)	0.227 (2,1,1)
	N°3	0.241 (-2,1,-1)	0.227 (-2,1,-1)
Angle (°)	N°1	0	0
	N°2	56.9	58.2
	N°3	118.9	121.8

3

1

2

• 1

		Experimental	Theoretical Pd2Sn alloy
D (nm) (h,k,l)	N°1	0.224 (2,1,1)	0.227 (2,1,1)
	N°2	0.218 (0,2,0)	0.216 (0,2,0)
	N°3	0.224 (-2,1,-1)	0.227 (-2,1,-1)
			· · ·
Angle (°)	N°1	0	0
	N°2	56.9	58.2
	N°3	118.9	116.5

1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 -				
and the second s	100			
	200	1		
S Same	6.00	and therein	\$#	
-	0.0	S-3.2	Rec	
and the second	1.20	5.0	-	
	Sec. Sec.	1000		
	C. Sugar		1	
a the	and the second second	No. March	10	
	and and	-		
State of the local division of the local div	2 nm	Tabantin		2
and the second		and the second	1240	3
			Sec. 1	□ 2
			6 9 9 9 9	
			Sec. 1	1

		Experimental	Theoretical
			Pd ₂ Sn alloy
D (nm) (h,k,l)	N°1	0.210 (0,2,0)	0.216 (0,2,0)
	N°2	0.229 (2,1,1)	0.227 (2,1,1)
	N°3	0.233 (2,-1,1)	0.227 (2,-1,1)
	N°4	0.123 (2,3,1)	0.127 (2,3,1)
	N°5	0.140 (4,0,2)	0.133 (4,0,2)
	N°6	0.123 (2,-3,1)	0.127 (2,-3,1)
Angle (°)	N°1	0	0
	N°2	54.6	58.2
	N°3	123.6	121.8
	N°4	25.7	28.3
	N°5	89	90
	N°6	153.7	151.7

Figure S7 – HRTEM of palladium-tin nanoparticles (on a copper grid with a carbon lacey) synthesized at room temperature with 2 equiv. of tin precursor under 4 bars of H_2 with the corresponding Fourier Transform and the attributed planes and angles compared to orthorhombic Pd₂Sn structure from JCPDS file n°04-004-2280.

Figure S8 – XPS spectrum and deconvolution of Pd 3d core levels of Pd colloid impregnated on a SBA-15700 support.

Catalytic study

NMR study

The cross-coupling product (4-acetylbiphenyl) was isolated and analyzed by ¹H NMR (300 MHz, CDCl₃): δ 8.06-8.02 (m, 2H), 7.72-7.67 (m, 2H), 7.66-7.62 (m, 2H), 7.61—7.45 (m, 2H), 7.44-7.40 (m, 1H), 2.64 (s, 3H), and ¹³C NMR (75 MHz, CDCl₃): δ 197.9, 146.0, 140.1, 136.0, 129.1, 129.0, 128.4, 127.4, 127.3, 26.8. These data are in full agreement with literature.^{1–3}

Figure S9 – ¹H NMR spectrum (300 MHz, CDCl₃) of the cross-coupling product (4-Acetylbiphenyl).

Chromatogram

A representative chromatogram is given in Figure S10, were the retention time and response factor are mentioned. All the reagents were bought and used to do a calibration curve prior to any kinetic measurements. *n*-Dodecane was used as internal standard.

Figure S10 – Representative chromatogram obtained to measure the conversions and yields.

TON and TOF assessment

The productivity (TON) was measured using the formula: $\frac{amount of converted reactant (mmol)}{amount of total palladium (mmol)}$. For example, as 0.2 mol% is used and a complete conversion is achieved, the TON is 500.

The activity (TOF₅₀) was measured using the formula: $\frac{TON}{time(h)}$, and it was measured at ca. 50 % conversion (slope to the curve).

Figure S11 – Kinetic monitoring of the Suzuki-Miyaura cross-coupling reaction using Pd and Pd₂Sn colloidal catalysts at $2 \cdot 10^{-3}$ mol % (left) and 0.2 mol% (right) of total Pd. The slopes of the conversion/product yields vs. time at ca. 50 % conversion and shown here as blue and purple dash lines were used to calculate TOF₅₀.

The same procedure was used to compare the Pd NPs synthesized in THF or toluene. Despite the discrepancy at 1 minute due to a slightly different addition time of the catalyst, the activities of both catalysts are very similar measured between 1 and 3 minutes.

Figure S12 – Kinetic monitoring of the Suzuki-Miyaura cross-coupling reaction using Pd NPs in toluene or THF at 0.2 mol% of total Pd.

References

- 1 C. Nájera, J. Gil-Moltó, S. Karlström and L. R. Falvello, Org. Lett., 2003, 5, 1451–1454.
- 2 J. H. Li and W. J. Liu, Org. Lett., 2004, 6, 2809–2811.
- 3 H. Firouzabadi, N. Iranpoor, M. Gholinejad and F. Kazemi, *RSC Adv.*, 2011, 1, 1013–1019.