Highly Anisotropic 1/3-Magnetization Plateau in a Ferrimagnet Cs₂Cu₃(SeO₃)₄·2H₂O: **Topology of Magnetic Bonding Required for Magnetization Plateau**

Artem V. Moskin,^[a,b] Ekaterina S. Kozlyakova,^[a,b] Larisa A. Shvanskava,^[a,b] Dmitry A. Chareev,^[b,c] Hyun-Joo Koo,^[d] Myung-Hwan Whangbo,^{*[d,e]} and Alexander N. Vasiliev^{*[a,b]}

¹Lomonosov Moscow State University, Moscow 119991, Russia ²National University of Science and Technology "MISiS", Moscow 119049, Russia ³Institute of Experimental Mineralogy, RAS, Chernogolovka 142432, Russia ⁴ Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea

⁵ Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA

We prepared Cs₂Cu₃(SeO₃)₄·2H₂O composed of Cu²⁺ ions at square-planar coordination sites and characterized its structural and magnetic properties, to show that $Cs_2Cu_3(SeO_3)_4 \cdot 2H_2O$ is a ferrimagnet exhibiting a highly anisotropic 1/3-magnetization plateau. This unprecedented anisotropy in a magnetization plateau is the consequence of three effects, namely, the orthogonal arrangements of the corner-sharing CuO₄ square planes, the nearest-neighbor antiferromagnetic exchange, and the anisotropic g-factor of the Cu^{2+} ions. By analyzing the topology of magnetic bonding, we explored why magnetic plateaus are observed only for certain ferrimagnets and antiferromagnets.

Email: mike whangbo@ncsu.edu

Email: vasil@lt.phys.msu.ru

S1. Bond valence sum analysis

Selected geometric parameters, selected hydrogen-bond parameters and bond valence sum (BVS) data for Cs₂Cu₃(SeO₃)₄·2H₂O are given in Tables S1-S3. The BVS calculation (Table S3) are in full agreement with the expected oxidations states of all atoms and consistent with the assignment of H₂O molecule [1].

Cs—O4 ⁱ	3.243 (3)	Cu1—O1 ^{vi}	1.949 (3)
Cs—O4 ⁱⁱ	3.243 (3)	Cu1—O1 ^{vii}	1.949 (3)
Cs—O4 ⁱⁱⁱ	3.295 (3)	Cu1—O1 ^{viii}	1.949 (3)
Cs—O4	3.295 (3)	Cu1—O1	1.949 (3)
Cs—O4 ^{iv}	3.340 (3)	Cu1—O3	2.882 (5)
Cs—O4 ^v	3.340 (3)	Cu1—O3 ^{viii}	2.882 (5)

Table S1. Selected bond lengths around cations (Å)

Cs—O2 ⁱⁱ	3.522 (3)	Cu2—O2	1.966 (3)
Cs—O2 ⁱ	3.522 (3)	Cu2—O2 ^{ix}	1.966 (3)
Cs—O2	3.649 (3)	Cu2—O1 ^{vii}	2.015 (3)
Cs—O2 ⁱⁱⁱ	3.649 (3)	Cu2—O1 ^x	2.015 (3)
Se—O4	1.658 (3)	Cu2—O3	2.3766 (13)
Se—O2	1.695 (3)	Cu2—O3 ^{ix}	2.3766 (13)
Se—O1	1.766 (3)		

Symmetry code(s): (i) x, y-1/2, -z; (ii) -x, -y+1, -z; (iii) -x, -y+1/2, z; (iv) y-1/4, -x+1/4, -z+1/4; (v) -y+1/4, x+1/4, -z+1/4; (vi) -x+1, -y+3/2, z; (vii) -y+5/4, x+1/4, -z+1/4; (viii) y-1/4, -x+5/4, -z+1/4; (ix) -x+1, -y+1, -z; (x) y-1/4, -x+3/4, z-1/4.

Table S2. Selected hydrogen-bond parameters of D—H···A, where D and A refer to the hydrogen bond donor and acceptor atoms, respectively.

		$\Pi \Pi (\Lambda)$	D A(A)	$D = \Pi^{*}A(\cdot)$
O3—H···O4 ⁱ	0.832 (19)	1.98 (2)	2.814 (4)	174 (6)

Symmetry code(s): (i) -y+5/4, x+3/4, z-1/4.

Table S3. Bond valence sums calculated for Cs₂Cu₃(SeO₃)₄·2H₂O

Atom	Cs	Cu1	Cu2	Se	Н	Σ
01		$0.482_{\downarrow 4}$	$0.403_{\downarrow 2}$	1.129		2.014
02	$0.051_{\downarrow 2^*} \ 0.036_{\downarrow 2}$		$0.460_{\downarrow 2}$	1.368		1.828
03		$0.039_{\downarrow 2}$	$0.152_{\downarrow 2}$		0.83 _{→2}	2.042
04	$0.107_{\downarrow 2}; 0.093_{\downarrow 2}; 0.083_{\downarrow 2}$			1.512	0.17	1.965
Σ		2.006	2.030	4.009	1	

*Symbols \rightarrow and \downarrow denote an increase in the corresponding contributions in rows and columns due to symmetry

S2. ac magnetic susceptibility

Fig. S1. Real (left panel) and imagimary (right panel) parts of ac magnetic susceptibility in Cs₂Cu₃(SeO₃)₄·2H₂O.

S3. Energy mapping analysis for spin exchange

To evaluate the spin exchanges $J_1 - J_3$, we employ the spin Hamiltonian defined as,

$$H_{spin} = -\sum_{i>j} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

where the spin exchange J_{ij} between two spin sites can be J₁, J₂, or J₃. In this definition, AFM and FM exchanges are represented by negative and positive values of J_{ij}, respectively. To evaluate J₁ – J₃, we carry out the energy-mapping analysis based on DFT calculations ¹²⁻¹⁴ using the four ordered spin states shown in Fig. S1.

Fig. S2. Ordered spin arrangements of (a) FM, (b) AF1 (c) AF2 and (d) AF3. The grey and white circles indicate up and down spin sites of Cu^{2+} ions, respectively. The numbers 1 to 3 indicate the spin exchange paths J₁ to J₃.

References

1. Brown, I. D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. *Acta Crystallogr. B* **1986**, 41, 244-247.