Tinning the Carbon: Hydrostannanes Strikes Back

Pavel Rublev,^{a,‡} Nikolay V. Tkachenko,^{a,‡} Anton S. Pozdeev,^a and Alexander I. Boldyrev^{*a}

a. Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States.
E-mail: a.i.boldyrev@usu.edu;
‡ Those authors contributed equally

Supporting Information

Contents

S1. Population size in Coalescence Kick simulations	2
S2. Example of SA-MD Global Optimization execution script	2
S3. Examples of SA-MD Global Optimization trajectory	4
S5. Spin-state energy difference	5
S6. Sn_2H_x and Sn_3H_y global minimum geometries (XYZ coordinates)	5
S7. AdNDP analysis of Sn_2H_x and Sn_3H_y global minimum structures	9
S8. AdNDP analysis of Sn_2H_x and Sn_3H_y classic-like structures	.16
S9. Coordinates (XYZ) of classic-like Sn ₂ H _x and Sn ₃ H _y structures	. 19

S1. Population size in Coalescence Kick simulations

Stoichiometry	Population Size	Stoichiometry	Population Size
Sn₂H	750	Sn₃H₂	1000
Sn ₂ H ₂	1000	Sn₃H₃	1000
Sn ₂ H ₃	1000	Sn₃H₄	2000
Sn₂H₄	1000	Sn₃H₅	3000
Sn₂H₅	2000	Sn₃H ₆	5000
Sn₂H ₆	3000	Sn₃H ₇	7000
Sn₃H	1000	Sn₃H ₈	10000

Table S1. Population size in Coalescence Kick simulations

S2. Example of SA-MD Global Optimization execution script

%md

```
Cell Cube 10 Spring 20
# Cell cube creates cubic wall around center of mass
# Spring is an elastic constant (kJ/mol) within quadratic potential
Minimize LBFGS Steps 5 Noise 0.45
# L-BFGS minimization is only needed for generating adequate initial
# structure. Noise generates random atomic displacements
# The next block is an MD Block
Initvel 1500 K
# Velocities generation for concrete temperature
Thermostat NHC Timecon 1 fs Massive Chain 5 MTS 5 # Thermostat settings
Timestep 0.5 fs # Integrand step length
Run 500 # How much steps in MD trajectory
# The next block is an annealing block
Minimize Anneal Steps 3000 TempConv 1250 K Noise 0.1
# TempConv is a convergence temperature
# Noise is a random atomic displacement
Dump Position Format XYZ Stride 0 Filename "Geometry 1500.xyz"
# Put the final geometry in the new file
Initvel 1250 K # New random velocities for the next temperature step
Thermostat NHC 1250 Timecon 1 fs Massive Chain 4 MTS 5
Run 400
Timestep 0.5 fs
Minimize Anneal Steps 3000 TempConv 1000 K Noise 0.1
Dump Position Format XYZ Stride 0 Filename "Geometry 1250.xyz"
```

Initvel 1000 K Thermostat NHC 1000 Timecon 2 fs Massive Chain 4 MTS 5 Run 400 Timestep 0.5 fs Minimize Anneal Steps 3000 TempConv 800 K Noise 0.1 Dump Position Format XYZ Stride 0 Filename "Geometry 1000.xyz" Initvel 800 K Thermostat NHC 800 Timecon 2 fs Massive Chain 3 MTS 5 Timestep 0.5 fs Run 300 Minimize Anneal Steps 3000 TempConv 600 K Noise 0.1 Dump Position Format XYZ Stride 0 Filename "Geometry 800.xyz" Initvel 600 K Thermostat NHC 600 Timecon 2 fs Massive Chain 3 MTS 5 Timestep 0.5 fs Run 300 CenterCOM Minimize Anneal Steps 3000 TempConv 300 K Noise 0.1 Dump Position Format XYZ Stride 0 Filename "Geometry 600.xyz" Initvel 300 K Thermostat NHC 300 Timecon 5 fs Timestep 0.5 fs Run 200 Minimize Anneal Steps 3000 TempConv 100 K Noise 0.05 Dump Position Format XYZ Stride 0 Filename "Geometry 300.xyz" Initvel 100 K Thermostat NHC 100 Timecon 5 fs Timestep 0.5 fs Run 100 Minimize Anneal Steps 3000 TempConv 50 K Noise 0.05 Dump Position Format XYZ Stride 0 Filename "Geometry 100.xyz" Initvel 50 K Thermostat NHC 50 Timecon 5 fs Timestep 0.5 fs Run 100 Minimize Anneal Steps 3000 TempConv 5 K Noise 0.025 Dump Position Format XYZ Stride 0 Filename "Geometry 50.xyz" Initvel 5 K Thermostat NHC 5 Timecon 10 fs Timestep 0.5 fs Run 100 Minimize Anneal Steps 3000 TempConv 1 K Noise 0.01 Dump Position Format XYZ Stride 0 Filename "Geometry 5.xyz" # Final L-BFGS geometry optimization Minimize LBFGS Steps 3000 StepLimit 0.1 Dump Position Format XYZ Stride 0 Filename "Geometry Final.xyz"

End

S3. Examples of SA-MD Global Optimization trajectory

Figure S3. Global Optimization trajectory of $Sn_3H_4^{S}$: red dots correspond to simulated annealing blocks, black dots correspond to MD blocks

S4. Execution performance of global optimization techniques

In this section we compared the execution performance of used global optimization techniques toward optimization of Sn₃H₂, Sn₃H₄, and Sn₃H₆ stoichiometries. It is worth to mention, this performance overview carries only an approximate character. Due to completely different program codes, linked MPI packages, OpenMP implementation, and architecture of computational clusters, timings and performance (in sense of core-hours) have a low quantitative meaning. For example, the absence of AVX-512 instructions steadily reduces performance of the Gaussian16 suite.

Table S4. An overview of execution performance. All calculations were performed using one computational node and different number of cores: 8 cores for CK calculations, 32 cores for SA-MC, and 32 cores for SA-MD calculations.

Stoichiometries	CK, core-hours	SA-MC, core-hours	SA-MD, core-hours
Sn₃H₂	111.84	90.61	122.88
Sn₃H₄	452.08	149.51	153.6
Sn₃H₀	1540.88	244.03	225.28

S5. Spin-state energy difference

Table S5. Spin-state energy difference. Energy differences were calculated on U-RSX-PBE-QIDH / [SARC/def2]-ZORA-TZVPP level of theory. Global minimum geometries were obtained through SA-MD minimization.

Stoichiometries	E ^T - E ^s , kcal/mol	Stoichiometries	E ^D - E ^Q , kcal/mol
Sn ₂ H ₂	24.74	Sn₂H	18.22
Sn₂H₄	18.38	Sn ₂ H ₃	21.53
Sn₂H ₆	92.20	Sn₂H₅	79.69
Sn₃H₂	24.31	Sn₃H	26.50
Sn₃H₄	35.29	Sn₃H₃	17.51
Sn₃H₀	45.13	Sn₃H₅	63.31
Sn₃H ₈	38.27	Sn₃H ₇	78.18

S6. Sn_2H_x and Sn_3H_y global minimum geometries (XYZ coordinates)

Table S6. Sn_2H_x and Sn_3H_y global minimum geometries

Stoichiometry ^{Multiplicity}		ХҮ	Z coordinates	
	Sn	0.455809605	1.057965691	0.602170708
Sn₂H ^D	Sn	-0.722583957	-0.694937180	-1.211623768
	Н	0.644274352	0.755871488	-1.364646940
	Sn	-0.855855565	1.083036929	-2.116552219
Sn₂H ^Q	Sn	0.068411394	-1.379685046	-3.283676308
	Н	0.229621849	2.249602849	-2.939796990
	Sn	-1.168891835	0.539021926	0.876332227
Sn-H-S	Sn	-0.641640985	-1.125730054	-1.293270526
3112112	н	0.460578984	0.051558786	-0.141380734
	Н	-1.135246164	-1.424150659	0.603020033
	Sn	-1.383802194	-0.288377937	-0.992194993
Sna∐a ^T	Sn	-0.092174588	-0.019724261	-3.623212588
3112112	н	1.489893209	0.547694292	-2.997176584
	Н	-0.100016587	-1.316809165	-2.124449663
	Sn	0.728392883	-0.036499175	1.224101472
	Sn	-1.151746714	-1.117196581	3.523830706
Sn ₂ H ₃ D	н	-1.001515628	0.248097254	2.095312046
	н	0.519606960	-1.484688730	2.525223968
	Н	1.457662499	0.930487232	2.544532808
	Sn	-1.180009548	1.194370850	-1.937950877
	Sn	0.897023206	-0.619859515	-2.573954891
Sn₂H₃ ^Q	Н	0.273488407	-2.150436022	-3.130868960
	н	1.937913482	0.005136936	-3.826139109
	Н	-2.359361077	1.705374011	-3.142099579
	Sn	-1.136889863	0.737481406	2.668745389
	Sn	1.993939611	0.824792450	3.070611411
SnaH4S	н	0.559451265	1.167654893	1.766359678
3112114	н	1.698843532	2.504786224	3.624959880
	н	-0.841946562	-0.942527657	2.114360621
	н	0.297603017	0.394512684	3.972963021

	Sn	0.127966896	0.657789334	-1.247555190
	Sn	-0.805856238	-0.287436401	-3.763785876
	н	-0.800836128	-2.029903416	-3.853919560
SI12H4	Н	-2.461394049	0.194743798	-3.993469026
	н	-1.099835032	0.561821053	-0.011842701
	Н	1.439375417	-0.341698801	-0.693518192
	Sn	2.108958485	-1.014456080	-1.267037167
	Sn	-0.229803067	-0.594680124	0.258604416
	н	0.043847149	0.570262847	1.519175959
Sn₂H₅ ^D	н	1.822269561	-2.224955236	-2.453422332
	н	-0.704566315	-2.051903717	1.078808485
	н	3.445774704	-1.514575112	-0.300436881
	н	2.546319482	0.437707423	-2.076492481
	Sn	0.774645435	-1.544662833	-2.444312283
	Sn	-1.467118107	1.389764887	-2.708439838
C U 0	н	-0.198792543	2.006288709	-1.705242984
Sn ₂ H ₅ ^s	н	-0.765551939	0.237589885	-3.829864688
(Dissociated)	Н	2.317545508	-0.860851791	-2.866044948
	н	0.811915247	-2.881030083	-1.314928960
	н	-2.149636600	2.680153225	-3.657526299
	Sn	-1.728288171	2.399635986	-1.461194687
	Sn	-1.667016244	-0.290618532	-2.230362443
	н	-1.877115181	-1.321613474	-0.870779733
Cm 11 S	н	-1.515405161	3.431417204	-2.819740921
Sh2H6°	Н	-0.477773966	2.745348689	-0.333290506
	н	-0.165803436	-0.685573201	-2.969086987
	Н	-3.230785334	2.794044358	-0.724772458
	н	-2.919312508	-0.636741030	-3.356170266
	Sn	-0.779116539	0.688312879	-0.774565165
	Sn	0.355316694	-1.036894448	-5.550831415
	Н	0.644980905	-1.868181247	-4.059873504
Sn₂H ₆ [⊤]	Н	-0.789551875	0.234594764	-5.288938857
(Dissociated)	Н	0.450175257	1.071092038	0.380994843
	Н	-2.221560436	1.547762315	-0.357507963
	Н	1.842826236	-0.351852463	-6.107688662
	Н	-0.254997842	1.203998778	-2.342510081
	Sn	-0.260576098	1.528499565	-0.072908291
So LID	Sn	-1.835210267	0.420616079	2.049172118
2030-	Sn	0.292316021	-1.176097144	1.011428514
	Н	0.972170344	0.047782499	-0.345492340
	Sn	-0.878904482	-1.911970184	1.678454202
Sp-HQ	Sn	-0.445674209	0.413480343	3.297715793
Sn3Hg	Sn	0.562222516	0.435443194	0.465397541
	Н	2.180251242	-0.181949658	0.941862921
	Sn	0.727902074	0.878723511	-0.293740091
	Sn	-2.185837247	1.386181862	-0.703742448
Sn₃H₂ ^S	Sn	-1.374888301	-1.155232380	0.291785180
	Н	0.466278130	-1.095818737	0.403470065
	Н	-0.633954657	2.351845744	-0.955673706

	Sn	1.819015600	-0.495908174	0.339710660
	Sn	-0.496589471	-0.098972894	2.437990706
Sn ₃ H₂ [⊤]	Sn	-1.106874866	-1.148212326	-0.184995000
	Н	1.451281803	0.090712244	2.188339902
	н	1.497419838	1.203845124	-0.148345150
	Sn	1.270036351	-2.117935150	-0.084955123
	Sn	2.122325053	0.285600977	1.365933310
Sn LI D	Sn	-0.784830911	0.169562463	0.292319488
3113113	Н	-1.129624630	-0.724233903	1.819455116
	н	2.016996117	-1.664211748	1.695523326
	Н	2.656598020	-0.694380639	-0.284775118
	Sn	0.035456475	-1.176831615	-1.600753075
	Sn	-2.130027714	-1.997140502	0.416598938
So LI Q	Sn	0.590293838	-1.180064496	1.597191150
3113113	Н	1.391981093	-1.005300651	-0.200049811
	н	1.460122339	-2.737062241	1.688362147
	Н	0.003607367	0.608344259	-1.631361242
	Sn	1.270036351	-2.117935150	-0.084955123
	Sn	2.122325053	0.285600977	1.365933310
Sn. H.S	Sn	-0.784830911	0.169562463	0.292319488
3 113 1 14	Н	-1.129624630	-0.724233903	1.819455116
	н	2.016996117	-1.664211748	1.695523326
	Н	2.656598020	-0.694380639	-0.284775118
	Sn	1.108813886	1.446263376	-0.329519839
	Sn	-0.865860449	-0.760226034	0.227071069
	Sn	1.103240437	-1.473085089	-2.047657010
Sn₃H₄ [⊤]	Н	-0.011258120	2.296339706	-1.432799959
	Н	-0.158512626	-1.718899669	1.544412204
	н	1.630671826	0.404869612	-1.932680241
	Н	2.473710033	-1.787198681	-0.943286883
	Sn	-0.103492749	2.509491813	-0.686055649
	Sn	1.650306233	0.143518363	-0.855524732
	Sn	-0.492812347	-0.407667952	1.096992949
Sn-H-D	н	3.259921620	0.083209855	-0.226019295
3113115	Н	0.610464498	0.388460135	2.263915851
	н	-1.046873538	1.412445316	0.631283286
	Н	1.748606235	-0.576593089	-2.425105841
	Н	-1.105090839	1.650890808	-1.898576560
	Sn	1.362448749	1.032395524	-1.640388479
	Sn	-0.898968687	-0.220771586	-0.363625744
	Sn	1.261027381	0.198235221	2.841808268
Sn₃H₅ ^Q	Н	2.353836133	0.656509565	1.596930720
(Dissociated)	Н	1.446891161	-1.453556453	3.250318839
	Н	-0.337858978	0.476167676	2.227550498
	Н	-0.026901746	-1.617035088	0.367292834
	Н	1.484759519	1.180068172	4.234454243

	r –			
	Sn	-0.323580236	-0.111673417	-2.626071896
	Sn	-0.652287545	2.082178206	-0.359965320
	Sn	0.669314319	0.156202929	1.395368646
	Н	2.160909479	0.725530774	2.061677337
Sn₃H₅ ^s	Н	-1.489182075	0.479880694	-1.145407278
	Н	-1.139882918	1.147531107	-3.611278590
	н	1.061182909	-1.316509864	0.566479028
	Н	-0.286243290	-0.318564374	2.757372070
	Н	0.594368358	1.382623944	-1.717372998
	Sn	-0.715472411	-1.943101506	0.840735746
	Sn	-1.131902118	1.927526844	1.445634563
	Sn	-2.013906575	-0.819382457	-1.373666977
Cr. LL T	н	-1.402026774	-2.676676814	2.265020430
	н	-1.122494529	0.608767023	2.555667038
(Dissociated)	н	-2.461102031	1.688007011	0.373064190
	н	-1.300727586	3.417819859	2.286620150
	н	0.942270444	-1.700751221	1.327553225
	н	0.327397818	1.906303351	0.546405865
	Sn	0.661768027	4.074161993	-0.510711951
	Sn	-0.593782772	-0.435131990	-0.382228647
	Sn	1.529594229	1.392030302	-0.788310329
	н	-0.114643601	-2.046025853	-0.747962067
	н	-1.170184845	-0.407504601	1.242382033
Sn₃H ₇ ^D	н	-0.853815257	4.243992686	-1.309049970
	н	-1 903238088	-0 027864298	-1 421626047
	н	0 464327364	4 540900523	1 136248753
	н	2 735366692	1 077816683	0 432035750
	н	1 774208250	5 166424554	-1 236778526
	Sn	-2 432827335	0 120083583	-2 377562502
	Sn	-0 448026756	2 126667603	0.914190027
	Sn	0.676439113	-0.421510797	0.300996349
	н	0 102420465	2 636225571	2 489587556
Sn ₂ H ₂ Q	н	-0 370287157	-1 1988/6089	-0.875022261
(Dissociated)	н	-3 57866/106	0 716//2319	-3 53001730/
(Dissociated)	ц.	-3.378004100	-0 206746048	-0.022001670
	и	0 728280821	-1 521600686	1 658121210
	н Ц	-2 180170211	2 047220862	1.000121219
	ц	-2.189170211	1 /1//77825	-1 077/5/501
	П Сп	-1.550296679	2 412720421	2 719520212
	511	-2.087090490	-2.412/20421	2.710550515
	511	0.955009900	0.096265015	1.210194954
	50		-2.280437453	0.903097809
		-0.044/98586	1.4545/9541	
Co. LLS		0.542537991	-3.020120429	1.25//13639
SI13H8	н	1.552//5058	0.2/54/0/58	2.813238049
	н	2.295/68526	0.1308/2123	0.133429393
	н	-2.1581/5246	-2.3056130/6	4.351112096
	н	-3.561441/67	-3.8825///20	2.5360///29
	H	-1.060894032	-2.449363123	-0.658991142
	Η	-3.769911642	-1.108372216	2.427231678

	Sn	-2.444523113	0.404854341	-3.215726260
	Sn	1.583919828	-1.145546368	-3.434174691
	Sn	-0.514459609	2.485044093	-3.011197700
	Н	0.193223153	-1.155257555	-4.446044087
5m 11 T	Н	1.994056262	-2.751107061	-2.994194202
SII3H8 (Dissociated)	Н	2.894042954	-0.408906845	-4.259762082
(Dissociated)	Н	1.215773522	-0.239452373	-2.021749508
	Н	-4.010806247	0.623653704	-2.452054890
	Н	-1.175558353	3.995052107	-3.512309903
	Н	0.095783869	2.625154517	-1.406115160
	Н	0.770130522	2.034099282	-4.064713158

S7. AdNDP analysis of Sn_2H_x and Sn_3H_y global minimum structures

Figure S7-B. AdNDP analysis of Sn₂H₂

o 3c-2e Sn-H-Sn σ-bond ON = 1.99 |e|

Structure of Sn₂H₄^s

Two 2c-2e Sn-H σ -bonds ON = 1.99 |e|

Two 1c-2e s-type lone-pairs

ON = 1.98 |e|

Two 3c-2e Sn-H-Sn σ -bonds ON = 1.99 |e|

Figure S7-D. AdNDP analysis of Sn₂H₄

Structure of $Sn_2H_5^{D}$

1c-1e s-type unpaired electron ON = 0.99 |e|

Five 2c-2e Sn-H σ-bonds ON = 2.00–1.99 |e|

2c-2e Sn-Sn σ-bonds ON = 2.00 |e|

Structure of $Sn_2H_6{}^s$

 $2c-2e Sn-Sn \sigma$ -bonds ON = 2.00 |e|

Six 2c-2e Sn-H σ-bonds ON = 2.00–1.99 |e|

Figure S7-F. AdNDP analysis of Sn₂H₆

Theree 1c-2e s-type lone-pairs ON = 1.96 |e|

3c-2e Sn-H-Sn σ-bond ON = 2.00 |e|

3c-2e π-bond ON = 2.00 |e|

Two 2c-1e Sn-Sn σ -bonds ON = 0.95 |e|

3c-1e σ-bond ON = 0.94 |e|

Figure S7-G. AdNDP analysis of Sn₃H

Figure S7-H. AdNDP analysis of Sn₃H₂

Figure S7-J. AdNDP analysis of Sn₃H₄

Structure of $Sn_3H_6{}^s$

 $2c-2e Sn-Sn \sigma-bond$ ON = 1.99 |e|

Two 1c-2e s-type lone-pairs ON = 1.97 |e|

Four 2c-2e Sn-H σ -bonds ON = 2.00–1.99 |e|

Two 3c-2e Sn-H-Sn σ -bonds ON = 1.99 |e|

Figure S7-L. AdNDP analysis of Sn₃H₆

Structure of Sn₃H₇^D

Two 2c-2e Sn-Sn σ -bonds ON = 1.99 |e|

1c-1e s-type unpaired electron ON = 0.98 |e|

Seven 2c-2e Sn-H σ -bonds ON = 1.99 |e|

Figure S7-M. AdNDP analysis of Sn₃H₇

Figure S7-N. AdNDP analysis of Sn₃H₈

Structure of $Sn_3H_3^+$ s

Three 1c-2e s-type lone-pairs ON = 1.98 |e|

 $3c-2e Sn-Sn-Sn \sigma$ -bond ON = 1.99 |e|

Three 3c-2e Sn-H-Sn σ -bonds ON = 1.99 |e|

Figure S7-O. AdNDP analysis of $Sn_3H_3^+$

S8. AdNDP analysis of Sn_2H_x and Sn_3H_y classic-like structures

Figure S8-A. AdNDP analysis of classic-like Sn₂H₂

Structure of Sn₂H₄^s

2c-2e Sn-Sn σ-bond ON = 2.00 |e|

Four 2c-2e Sn-H σ -bonds ON = 2.00–1.98 |e|

1c-2e s-type unpaired electron ON = 0.91 |e|

1c-2e s-type unpaired electron ON = 0.91|e|

Figure S8-B. AdNDP analysis of classic-like Sn₂H₄

Figure S8-C. AdNDP analysis of classic-like Sn₃H₄

Figure S8-D. AdNDP analysis of classic-like Sn₃H₆

Structure of Sn₃H₅^s

Three 2c-2e Sn-Sn σ -bond ON = 1.98 |e|

Figure S8-E. AdNDP analysis of cyclic Sn₃H₆

Six 2c-2e Sn-H σ -bonds ON = 2.00 |e|

S9. Coordinates (XYZ) of classic-like Sn_2H_x and Sn_3H_y structures

Stoichiometry	XYZ coordinates			
	Sn	-0.052107602	0.253457424	-2.161585874
SnaHa	Sn	0.305843612	-0.088544125	-4.987446994
3112112	Н	-0.868668658	1.082565992	-5.597212926
	Н	1.124761157	-0.915389698	-1.552007619
	Sn	0.528420792	-1.038109843	0.601377775
	Sn	0.458779058	1.651223782	0.068519251
Sn-H.	Н	-1.043806132	-1.737300185	0.791649764
3112114	Н	1.355792278	-1.420522061	2.073171000
	Н	-0.369209987	2.033071807	-1.403085620
	Н	2.030723990	2.350836499	-0.122431170
	Sn	-3.195421975	-0.714993330	-2.320060726
	Sn	-0.572124236	0.004624052	-3.526049169
	Sn	-1.480155297	0.297186907	-0.415219827
Sn₃H₄	Н	-1.031696430	1.097304871	-4.772471808
	Н	-1.921273021	-1.537000617	-0.970379118
	Н	0.153364563	-1.385108927	-4.227393831
	Н	0.700371967	0.798434152	-2.645934895
	Sn	-0.075224180	-0.404509482	-2.554570176
	Sn	-0.162600956	-0.038611426	-5.266461647
	Sn	1.815039631	1.277764306	-1.291786391
	Н	-1.395350176	-0.901869692	-6.118878653
Aliphatic Sn ₃ H ₆	н	1.310705578	-0.429468231	-6.083180642
	Н	-1.618332059	-0.029158342	-1.857657580
	н	1.215392467	2.867284087	-1.035202599
	н	3.230664236	1.372061888	-2.261228216
	Н	2.249233572	0.612675196	0.232396297
	Sn	-2.046368070	-1.339217661	-1.498850461
	Sn	0.141085460	0.276043867	-2.344438292
	Sn	-0.215591098	-0.302394718	0.424113049
	Н	0.037698416	1.957213715	-2.707789658
Cyclic Sn ₃ H ₆	Н	1.621936613	-0.332952307	-2.981209078
	Н	-0.953965024	0.762464752	1.559960106
	Н	0.630727064	-1.527612013	1.291016215
	Н	-1.996569787	-2.939172669	-2.136911363
	н	-3.583163575	-0.650713965	-1.864243519

 Table S9.
 Coordinates (XYZ) of classic-like Sn2Hx and Sn3Hy structures