ESI for:

The Reactivity of Antimony and Bismuth *N,C,N*-Pincer Compounds toward K[BEt₃H] – the Formation of Heterocyclic Compounds *vs*. Element-Element Bonds *vs*. Stable Terminal Sb-H Bonds.

P. Novák, M. Erben, R. Jambor, M. Hejda, A. Růžička, E. Rychagova, S. Ketkov* and L. Dostál*

*E-mails: libor.dostal@upce.cz (L.D.), sketkov@iomc.ras.ru (S.K.)

Table of contents:

1) Synthesis and NMR spectra of starting compounds	S2-S7
2) NMR spectra of studied compounds	S8-S13
3) NMR spectra of important reaction mixtures	S14-S20
4) Crystallographic data for studied compounds	S21-S22
5) IR and Raman spectra	S23
6) Theoretical study	S24-S25

1) Synthesis and NMR spectra of starting compounds.

Synthesis of 2-Sb

779 mg (1.36 mmol) of **1-Sb** was dissolved in benzene (15 mL) and 270 μL (1.36 mmol) of neat Me₃SiCH₂OTf was added. The solution was stirred for 12 h at r.t. and the reaction mixture was evaporated. The solid residue was washed with hexane (*ca* 2x10 mL) and dried *in vacuo* giving **2-Sb** as a white powder. Yield 842 mg, 77%, m.p. 240-244 °C. Anal. Calcd for C₃₇H₅₀F₃N₂O₃SSbSi (Mr = 809.72): C, 54.9 %; H, 6.2 %; N, 3.5 %. Found: C, 55.2 %; H 6.5 %; N, 3.8 %. ¹H NMR (500 MHz, CD₃CN): δ -0.49 [9H, s, Si(*CH*₃)₃]; 0.87 [2H, s, Si*CH*₂]; 1.10 [6H, d, ³J_{H,H} = 6.7 Hz, *i*Pr-C*H*₃]; 1.21 [6H, d, ³J_{H,H} = 6.9 Hz, *i*Pr-C*H*₃]; 1.26 [6H, d, ³J_{H,H} = 6.7 Hz, *i*Pr-C*H*₃]; 1.21 [6H, m, Ar-*H*]; 8.08 [1H, t, ³J_{H,H} = 7.7 Hz, Ar-*H*]; 8.47 [2H, d, ³J_{H,H} = 7.7 Hz, Ar-*H*]; 9.16 [2H, s, C*H*=N] ppm. ¹³C{¹H} NMR (125.76 MHz, CD₃CN): δ -0.7 [Si(*CH*₃)₃]; 7.9 [SiCH₂]; 23.7 [*i*Pr-C*H*₃]; 23.9 [*i*Pr-C*H*₃]; 25.1 [*i*Pr-C*H*₃]; 26.8 [*i*Pr-C*H*₃]; 29.1 [*i*Pr-C*H*]; 30.0 [*i*Pr-C*H*]; not detected [CF₃], 125.6 [Ar-C]; 125.9 [Ar-C]; 129.5 [Ar-C]; 133.3 [Ar-C]; 137.5 [Ar-C]; 140.3 [Ar-C]; 141.2 [Ar-C]; 141.4 [Ar-C]; 142.0 4 [Ar-C]; 156.3 [C-ipso]; 171.1 [CH=N] ppm.

Figure S1: ¹H NMR spectrum of 2-Sb in CD₃CN (500 MHz).

Figure S2: ${}^{13}C{}^{1}H$ -APT NMR spectrum of 2-Sb in CD₃CN (125.6 MHz).

Synthesis of 2-Bi

826 mg (1.25 mmol) of **1-Bi** was dissolved in benzene (15 mL) and 250 μL (1.25 mmol) of neat Me₃SiCH₂OTf was added. The solution was stirred for 12 h at r.t. and the reaction mixture was evaporated. The solid residue was washed with hexane (*ca* 2x10 mL) and dried *in vacuo* giving **2-Bi** as a white powder. The product can re-crystallized from dichloromethane/hexane mixture. Yield 800 mg, 71%, m.p. 190-192 °C. Anal. Calcd for C₃₇H₅₀BiF₃N₂O₃SSi (Mr = 896.94): C, 49.6 %; H, 5.6 %; N, 3.1 %. Found: C, 49.5 %; H 5.7 %; N, 3.3 %. ¹H NMR (500 MHz, CD₃CN): *δ* -0.37 [9H, s, Si(CH₃)₃]; 1.11 [6H, d, ³J_{H,H} = 6.7 Hz, *i*Pr-CH₃]; 1.19 [6H, d, ³J_{H,H} = 6.7 Hz, *i*Pr-CH₃]; 1.24 [2H, s, SiCH₂]; 1.27 [12H, m, *i*Pr-CH₃]; 2.72 [2H, h, ³J_{H,H} = 6.8 Hz, *i*Pr-CH]; 3.01 [2H, h, ³J_{H,H} = 6.7 Hz, *i*Pr-CH]; 7.31-7.36 [6H, m, Ar-H]; 8.13 [1H, t, ³J_{H,H} = 7.7 Hz, Ar-H]; 8.57 [2H, d, ³J_{H,H} = 7.7 Hz, Ar-H]; 9.68 [2H, s, CH=N] ppm. ¹³C {¹H} NMR (125.76 MHz, CD₃CN): *δ* 0.6 [Si(CH₃)₃]; 23.3 [*i*Pr-CH₃]; 24.3 [*i*Pr-CH₃]; 24.9 [*i*Pr-CH₃]; 26.6 [*i*Pr-CH₃]; 29.0 [*i*Pr-CH]; 30.1 [*i*Pr-CH]; 34.2 [SiCH₂]; 122.2 [t, ¹J_{F,C} = 325 Hz, CF₃], 125.2 [Ar-C]; 125.8 [Ar-C]; 129.0 [Ar-C]; 131.9 [Ar-C]; 139.6 [Ar-C]; 140.3 [Ar-C]; 141.6 [Ar-C]; 143.5 [Ar-C]; 147.4 [Ar-C]; 176.0 [CH=N]; 192.0 [C-ipso] ppm.

Figure S3: ¹H NMR spectrum of **2-Bi** in CD₃CN (500 MHz). *denotes traces of moisture in CD₃CN.

Figure S4: ${}^{13}C{}^{1}H$ NMR spectrum of 2-Bi in CD₃CN (125.6 MHz).

Synthesis of 4-Sb

1.002 g (2.61 mmol) of **3-Sb** was dissolved in thf (40 mL), cooled to -25 °C and 5.22 mL (5.22 mmol) of 1M solution of K[BEt₃H] in thf as added dropwise. The yellow solution was stirred for 10 min at -25 °C and for additional 30 min at r.t. Subsequently, 0.52 mL (2.61 mmol) of neat Me₃SiCH₂OTf was added. The solution was stirred for 1 h at r.t. and the reaction mixture was evaporated. The solid residue was washed with hexane (*ca* 2x10 mL) and dried *in vacuo*. Thus, obtained solid was extracted with acetonitrile (50 mL) and the clear colorless extract was

evaporated to give **4-Sb** as a white powder. The product can re-crystallized from thf/hexane mixture. Yield 592 mg, 42%, m.p. 132-137 °C. Anal. Calcd for $C_{17}H_{30}F_3N_2O_3SSbSi$ (Mr = 549.34): C, 37.2 %; H, 5.5 %; N, 5.1 %. Found: C, 37.6 %; H 5.7 %; N, 5.3 %. ¹H NMR (400 MHz, CD₃CN): δ 0.22 [9H, s, Si(CH₃)₃]; 0.87 [2H, s, SiCH₂]; 2.57 [6H, s, N(CH₃)₂]; 2.64 [6H, s, N(CH₃)₂]; 3.91 and 3.99 [4H, AB pattern, ²J_{H,H} = 15.1 Hz, NCH₂]; 7.27 [2H, d, ³J_{H,H} = 7.5 Hz, Ar-H]; 7.44 [1H, t, ³J_{H,H} = 7.5 Hz, Ar-H] ppm. ¹³C{¹H} NMR (100.6 MHz, CD₃CN): δ 1.1 [Si(CH₃)₃]; 8.6 [SiCH₂]; 47.2 [N(CH₃)₂]; 48.2 [N(CH₃)₂]; 65.4 [NCH₂]; 122.1 [t, ¹J_{F,C} = 322 Hz, CF₃], 126.6 [Ar-C]; 131.9 [Ar-C]; 142.9 [C-ipso]; 144.6 [Ar-C] ppm.

Figure S5: ¹H NMR spectrum of 4-Sb in CD₃CN (400 MHz). *denotes traces of thf.

Figure S6: ¹³C{¹H} NMR spectrum of 4-Sb in CD₃CN (125.6 MHz). *denotes traces of thf.

Figure S7: ${}^{13}C{}^{1}H$ -APT NMR spectrum of 4-Sb in CD₃CN (125.6 MHz).

Synthesis of 5-Sb

2.189 g (5.7 mmol) of **3-Sb** was mixed with thf (60 mL), cooled to -25 °C and 11.4 mL (11.4 mmol) of 1M solution of K[BEt₃H] in thf as added dropwise. The orange solution was stirred for 10 min at -25 °C and for additional 30 min at r.t. Subsequently, 0.36 mL (5.7 mmol) of neat MeI was added. The solution was stirred for 1 h at r.t. and the reaction mixture was evaporated. The solid residue was washed with hexane (*ca* 2x10 mL) and dried *in vacuo*. Thus, obtained solid was extracted with acetonitrile (30 mL) and the clear colorless extract was evaporated and washed with hexane (10 mL) give **5-Sb** as a white powder. Yield 1.532 g, 59%, m.p. 227-230 °C. Anal. Calcd for $C_{13}H_{22}IN_2Sb$ (Mr = 455.00): C, 34.3 %; H, 4.9 %; N, 6.2 %. Found: C, 34.8 %; H 5.2 %; N, 6.3 %. ¹H NMR (500 MHz, CD₃CN): δ 1.25 [3H, s, CH₃]; 2.57 [6H, s, N(CH₃)₂]; 2.69 [6H, s, N(CH₃)₂]; 3.94 and 3.99 [4H, AB pattern, ²J_{H,H} = 14.9 Hz, NCH₂]; 7.28 [2H, d, ³J_{H,H} = 7.5 Hz, Ar-*H*]; 7.43 [1H, t, ³J_{H,H} = 7.5 Hz, Ar-*H*] ppm. ¹³C {¹H} NMR (100.6 MHz, CD₃CN): δ 6.7 [CH₃]; 46.7 [N(CH₃)₂]; 48.1 [N(CH₃)₂]; 65.8 [NCH₂]; 126.3 [Ar-C]; 131.5 [Ar-C]; 143.2 [C-ipso]; 144.5 [Ar-C] ppm.

Figure S8: ¹H NMR spectrum of 5-Sb in CD₃CN (500 MHz).

Figure S9: ${}^{13}C{}^{1}H$ NMR spectrum of 5-Sb in CD₃CN (125.6 MHz).

2) NMR spectra of studied compounds.

Figure S10: ¹H NMR spectrum of 6-Sb in C₆D₆ (500 MHz).

Figure S11: ${}^{13}C{}^{1}H$ -APT NMR spectrum of 6-Sb in C₆D₆ (125.6 MHz).

Figure S12: ¹H NMR spectrum of 6-Bi in C_6D_6 (500 MHz). *denotes traces of hexane present in dissolved single-crystals.

Figure S13: ¹³C{¹H}-APT NMR spectrum of **6-Bi** in C₆D₆ (125.6 MHz). *denotes traces of hexane present in dissolved single-crystals.

Figure S14: ¹H NMR spectrum of *meso-7-Sb* and *rac-RR/SS-7-Sb* in C₆D₆ (500 MHz).

Figure S15: ¹³C{¹H}-APT NMR spectrum of *meso-7-Sb* and *rac-RR/SS-7-Sb* in C₆D₆ (125.6 MHz).

Figure S16: ¹H NMR spectrum of *meso-7-Bi* and *rac-RR/SS-7-Bi* in C₆D₆ (400 MHz).

Figure S17: ¹³C{¹H}-APT NMR spectrum of *meso-*7-Bi and *rac-RR/SS-*7-Bi in C₆D₆ (100.2 MHz).

Figure S18: ¹H NMR spectrum of 9-Sb in C_6D_6 (500 MHz).

Figure S19: ${}^{13}C{}^{1}H$ -APT NMR spectrum of 9-Sb in C₆D₆ (125.6 MHz).

Figure S20: ¹H NMR spectrum of 10-Sb in C_6D_6 (500 MHz).

Figure S21: ${}^{13}C{}^{1}H$ -APT NMR spectrum of 10-Sb in C₆D₆ (125.6 MHz).

3) NMR spectra of important reaction mixtures.

Figure S22: ¹H NMR spectra showing mixture after heating of **10-Sb** neat (90 °C, 5 days) resulting in partial formation of mixture *meso-***8-Sb** and *rac-RR/SS-***8-Sb** along with the starting material.

Figure S23: ¹H NMR spectra of *meso-7-Sb* (bottom) and formation of its mixture with *rac-RR/SS-7-Sb* (0.6:1, top). Bulk sample after crystallization dissolved and sealed in C₆D₆ (500 MHz).

Figure S24: ¹H NMR spectra of *meso-7-Sb* (bottom) and formation of its mixture with *rac-RR/SS-7-Sb* (0.6:1, top). One single-crystal dissolved and sealed in C_6D_6 (ns = 50, 500 MHz). *denotes a trace amount of moisture visible due to the extremely low concentration of the sample.

Figure S25: ¹H NMR spectra showing mixture of a bulk sample *meso-7-Sb* and *rac-RR/SS-7-Sb* (0.6:1) after two months sealed in C_6D_6 (500 MHz).

Figure S26: ¹H NMR spectra showing mixture of a bulk sample *meso-7-Sb* and *rac-RR/SS-7-Sb* after 1 week of heating (90 °C) sealed in C_6D_6 (ratio 0.76:1, bottom) and then leaving the sample at r.t. to recover the original mutual ratio of 0.6:1 (3.5 and 24h, top spectra) (500 MHz).

Figure S27: ¹H NMR spectra showing gradual conversion of *meso-7-Sb* to its mixture with *rac-RR/SS-7-Sb* at r.t. in C₆D₆ (the final ration again 0.6:1, 500 MHz).

Figure S28: ¹H NMR spectra of mixture of *meso-7-Bi* and *rac-RR/SS-7-Bi* obtained upon dissolving bulk sample (ratio 0.69:1) after crystallization and sealed in C_6D_6 (bottom) and after 3.5 and 24 h (top, final ratio 0.61:1, 500 MHz).

Figure S29: ¹H NMR spectra of mixture of *meso-7-Bi* and *rac-RR/SS-7-Bi* (ratio 1.09:1) obtained upon dissolving one single crystal of *meso-7-Bi* sealed in C_6D_6 (bottom) and after 3.5 and 24 h (top, final ratio 0.61:1, 500 MHz).

Figure S30: ¹H NMR spectrum of mixture of *meso-7-Bi* and *rac-RR/SS-7-Bi* (ratio 0.61:1) after one week at r.t. (C₆D₆, 500 MHz).

Figure S31: ¹H NMR spectrum of mixture of *meso/rac-7-Sb* and *meso/rac-RR/SS-7-Bi* after 72 h at r.t. (C₆D₆, 500 MHz).

Figure S32: ¹³C{¹H} NMR spectrum of mixture of *meso/rac-7-Sb* and *meso/rac-RR/SS-7-Bi* after 72 h at r.t. (C₆D₆, 500 MHz).

*meso/rac-***7-Bi** after 72 h at r.t. along with pure samples of *meso/rac-***7-Sb** and *meso/rac-RR/SS-***7-Bi** for comparison (C₆D₆, 500 MHz).

Figure S32: ¹³C{¹H} NMR spectra (region of CH₂N groups) of mixture of *meso/rac-***7-Sb** and *meso/rac-***7-Bi** after 72 h at r.t. along with pure samples of *meso/rac-***7-Sb** and *meso/rac-***R**/*SS-***7-Bi** for comparison (C₆D₆, 500 MHz).

4) Crystallographic data for studied compounds.

	2-Bi	4-Sb	6-Sb	
Formula	$C_{37}H_{50}BiF_3N_2O_3SSi$	$C_{17}H_{30}F_3N_2O_3SSbSi$	$C_{42}H_{65}N_2SbSi$	
Formula weight, g mol ⁻¹	896.92	549.33	747.80	
Crystal system	Monoclinic	Triclinic	Orthorhombic	
Crystal size, mm	$0.59 \times 0.27 \times 0.15$	$0.40 \times 0.07 \times 0.05$	$0.59 \times 0.53 \times 0.37$	
Space group	$P-2_1/n$	P-1	Pna2 ₁	
<i>a</i> , Å	13.8907(7)	9.1611(7)	13.5556(5)	
<i>b</i> , Å	13.5122(5)	10.0853(8)	18.2010(6)	
<i>c</i> , Å	21.3741(9)	13.3015(10)	16.9952(6)	
<i>α</i> , °	90	87.219(3)	90	
β,°	92.234(2)	79.274(3)	90	
γ, °	90	72.520(3)	90	
<i>V</i> , Å ³	4008.7(3)	1151.69(16)	4193.1(3)	
Ζ	4	2	4	
$ ho_{ m calcd},{ m Mg}\;{ m m}^{-3}$	1.4863	1.584	1.185	
μ (Mo K α), mm ⁻¹	4.529	1.384	0.715	
<i>F</i> (000)	1800	556	1584	
θ range, deg	1 to 26.5	1 to 30.0	1 to 29.0	
No. of reflns collected	85620	42574	32788	
No. indep. Reflns	8304	7535	7888	
No. obsd reflns with $(I > 2\sigma(I))$, R_{int}	6387, 0.058	5697, 0.072	6376, 0.036	
No. refined params	453	288	439	
GooF (F^2)	1.053	1.108	1.027	
$R_1(F)(I > 2\sigma(I))$	0.044	0.053	0.039	
$wR_2(F^2)$ (all data)	0.063	0.093	0.085	
Largest diff peak/hole, e Å ⁻³	1.095 / -1.446	2.175 / -1.325	0.598 / -0.369	
CCDC	2203728	2203729	2203732	
$R_{\text{int}} = \sum F_o^2 - F_{\text{o,mean}} /\sum F_o^2$, $S = [\sum (w(F_o^2 - F_c^2)^2)/(N_{\text{diffrs}} - N_{\text{params}})]^{\frac{1}{2}}$ for all data, $R(F) = \frac{1}{2} \sum (w(F_o^2 - F_c^2)^2)/(N_{\text{diffrs}} - N_{\text{params}})$				

Table S1.Crystal data and structure refinement of studied compounds.

 $\sum ||F_o| - |F_c||/\sum |F_o| \text{ for observed data, } wR(F^2) = [\sum (w(F_o^2 - F_c^2)^2)/(\sum w(F_o^2)^2)]^{\frac{1}{2}} \text{ for all data.}$

	6-Bi	7-Sb	7-Bi
Formula	C42H65BiN2SbSi	$C_{32}H_{60}N_4Sb_2Si_2$	C ₁₆ H ₃₀ BiN ₂ Si
Formula weight, g mol ⁻¹	835.03	800.52	487.49
Crystal system	Orthorhombic	Triclinic	Triclinic
Crystal size, mm	$0.52 \times 0.32 \times 0.26$	$0.59 \times 0.59 \times 0.23$	$0.59 \times 0.49 \times 0.09$
Space group	P212121	P-1	P-1
<i>a</i> , Å	13.4794(7)	9.6926(5)	9.8084(4)
<i>b</i> , Å	17.0612(10)	9.9028(6)	9.9912(4)
<i>c</i> , Å	18.2148(8)	11.5941(7)	11.6118(4)
<i>α</i> , °	90	114.372(2)	114.184(2)
β, °	90	101.681(2)	100.792(2)
γ, °	90	96.559(2)	98.542(2)
V, Å ³	4188.9(4)	967.98(10)	986.96(7)
Ζ	4	1	2
$ ho_{ m calcd},{ m Mg}\;{ m m}^{-3}$	1.324	1.373	1.640
μ (Mo K α), mm ⁻¹	4.266	1.482	1.482
<i>F</i> (000)	1712	410	474
θ range, deg	1 to 26.0	1 to 27.5	1 to 26.5
No. of reflns collected	33155	31488	23235
No. indep. Reflns	8201	4432	4084
No. obsd reflns with $(I > 2\sigma(I))$, R_{int}	6035, 0.058	4244, 0.034	3504, 0.058
No. refined params	427	189	198
GooF (F^2)	1.067	1.144	1.145
$R_1(F)(I > 2\sigma(I))$	0.050	0.022	0.049
$wR_2(F^2)$ (all data)	0.114	0.052	0.131
Largest diff peak/hole, e Å ⁻³	1.432 / -0.986	1.822 / -0.943	2.852 / -3.532
CCDC	2203727	2203731	2203730

Table S1 (continuation). Crystal data and structure refinement of studied compounds

 $\overline{R_{\text{int}} = \sum |F_o^2 - F_{\text{o},\text{mean}}|^2 / \sum F_o^2}, \ S = [\sum (w(F_o^2 - F_c^2)^2) / (N_{\text{diffrs}} - N_{\text{params}})]^{\frac{1}{2}} \text{ for all data, } R(F) = \sum |F_o| - |F_c| / \sum |F_o| \text{ for observed data, } wR(F^2) = [\sum (w(F_o^2 - F_c^2)^2) / (\sum w(F_o^2)^2)]^{\frac{1}{2}} \text{ for all data.}$

5) IR and Raman spectra

Figure S35: Infrared (top) and Raman (bottom) spectra of 9-Sb.

Figure S36: Infrared (top) and Raman (bottom) spectra of 10-Sb.

6) Theoretical study

Figure S37. Contour maps of the LOL function (0.5-0.7, step 0.02) in the EEC(Arene) plane (E = Sb, Bi, Arene = $[2,6-(Me_2NCH_2)_2C_6H_3]$) of complexes *meso-***7-Sb** (a) and *meso-***7-Bi** (b).

Figure S38. Optimized structures of *rac-SS*-**7-Sb** (a) and *rac-SS*-**7-Bi** (b). Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]:*rac-SS*-**7-Sb**: Sb(1)-C(1) 2.185, Sb(1)-N(1) 3.005, Sb(1)-N(2) 4.911, Sb(1)-C(13) 2.193, Sb(1)-Sb(1a) 2.851, C(1)-Sb(1)-C(13) 102.48, C(1)-Sb(1)-Sb(1a) 92.88, C(13)-Sb(1)-Sb(1a) 99.72; *rac-SS*-**7-Bi**: Bi(1)-C(1) 2.287, Bi(1)-N(1) 3.184, Bi(1)-N(2) 4.221, Bi(1)-C(13) 2.274, Bi(1)-Bi(1a) 2.999, C(1)-Bi(1)-C(13) 100.56, C(1)-Bi(1)-Bi(1a) 98.84, C(13)-Bi(1)-Bi(1a) 94.41.

Figure S39. Optimized structures and relative energies of model complex [2,6- $(Me_2NCH_2)_2C_6H_3$](NpSi)(Me)Sb and the transition state corresponding to inversion at the Sb atom.