Phosphido-Borane-Supported Stannates

Keith Izod,* Atheer M. Madlool, Alex Craig, Paul G. Waddell

Main Group Chemistry Laboratories, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

SUPPORTING INFORMATION

Contents:

- S2-S20 ¹H, ¹³C{¹H}, ⁷Li, ¹¹B{¹H}, ³¹P{¹H}, and ¹¹⁹Sn{¹H} NMR spectra, as appropriate, for compounds **2Li**, **2Na**, **2K**, **3Li**, **3Na**, **3K**, and **4Li**.
- S21-S23 ${}^{11}B{}^{1}H$, ${}^{31}P{}^{1}H$, and ${}^{119}Sn{}^{1}H$ NMR spectra showing the decomposition of **3Li** in THF.
- S24-S25 Table S1. Crystallographic data for compounds **2Li**, **2Na**, **2K**, **3Li**, **3Na**, **3K**, and **4Li**.
- S26 Figure S1. Polymeric structure of **2K**, with selected bond lengths and angles.
- S27-S30 Figures S2-S8. Asymmetric units of **2Li**, **2Na**, **2K**, **3Li**, **3Na**, **3K**, and **4Li**, with 40% probability ellipsoids.

¹³C{¹H} NMR spectrum of **2Li** in d_8 -THF.

¹¹B{¹H} NMR spectrum of **2Li** in d_8 -THF (*free phosphine-borane **2H** due to partial hydrolysis during sample preparation).

⁷Li NMR spectrum of **2Li** in d_8 -THF.

³¹P{¹H} NMR spectrum of **2Li** in d_8 -THF (*free phosphine-borane **2H** due to partial hydrolysis during sample preparation).

¹¹⁹Sn{¹H} NMR spectrum of **2Li** in d_8 -THF.

¹H NMR spectrum of **2Na** in d_8 -THF.

¹³C{¹H} NMR spectrum of **2Na** in d_8 -THF.

¹¹B{¹H} NMR spectrum of **2Na** in d_8 -THF (*free phosphine-borane **2H** due to partial hydrolysis during sample preparation).

³¹P{¹H} NMR spectrum of **2Na** in d_8 -THF (*free phosphine-borane **2H** due to partial hydrolysis during sample preparation).

¹¹⁹Sn{¹H} NMR spectrum of **2Na** in d_8 -THF.

¹H NMR spectrum of **2K** in d_8 -THF.

¹³C{¹H} NMR spectrum of **2K** in d_8 -THF.

¹¹B{¹H} NMR spectrum of **2K** in d_8 -THF.

³¹P{¹H} NMR spectrum of **2K** in d_8 -THF.

¹¹⁹Sn{¹H} NMR spectrum of **2K** in d_8 -THF.

¹³C{¹H} NMR spectrum of **3Li** in d_8 -THF.

¹¹B{¹H} NMR spectrum of **3Li** in d_8 -THF.

⁷Li{¹H} NMR spectrum of **3Li** in d_8 -THF.

³¹P{¹H} NMR spectrum of **3Li** in d_8 -THF.

¹¹⁹Sn{¹H} NMR spectrum of **3Li** in d_8 -THF.

¹H{¹¹B} NMR spectrum of **3Na** in d_8 -toluene.

¹³C{¹H} NMR spectrum of **3Na** in d_8 -toluene.

¹¹B{¹H} NMR spectrum of **3Na** in d_8 -toluene toluene (*free phosphine-borane **3H** due to partial hydrolysis during sample preparation).

³¹P{¹H} NMR spectrum of **3Na** in d_8 -toluene toluene (*free phosphine-borane **3H** due to partial hydrolysis during sample preparation).

¹H{¹¹B} NMR spectrum of **3K** in d_8 -toluene.

¹¹B{¹H} NMR spectrum of **3K** in d_8 -toluene (*free phosphine-borane **3H** due to partial hydrolysis during sample preparation).

³¹P{¹H} NMR spectrum of **3K** in d_8 -toluene (*free phosphine-borane **3H** due to partial hydrolysis during sample preparation).

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -19 f1 (ppm)

¹¹⁹Sn{¹H} NMR spectrum of **3K** in d_8 -toluene.

¹³C{¹H} NMR spectrum of **4Li** in d_8 -toluene.

⁷Li{¹H} NMR spectrum of **4Li** in d_8 -toluene.

¹¹⁹Sn{¹H} NMR spectrum of **4Li** in d_8 -toluene.

 $^{31}P\{^{1}H\}$ NMR spectrum of a solution of **3Li** in THF, immediately after preparation.

-4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -58 -60 -62 -64 f1 (ppm)

 $^{11}B\{^{1}H\}$ NMR spectrum of a solution of **3Li** in THF, after 84 hours.

¹¹⁹Sn{¹H} NMR spectrum of a solution of **3Li** in THF, after 84 h.

Compound	2Li	2Na	2K	3Li	3Na	3К	4Li
formula	C ₃₀ H ₇₅ B ₃ LiO ₃ P ₃ Sn	C ₂₂ H ₆₁ B ₃ NaOP ₃ Sn	C ₂₂ H ₆₁ B ₃ KOP ₃ Sn	C40H47B3LiOP3Sn	$C_{44}H_{57}B_3NaO_2P_3Sn$	$C_{88}H_{114}B_6K_2O_4P_6Sn_2$	$C_{43}H_{77}B_3LiO_4P_3Sn$
$M_{ m w}$	734.87	608.72	624.83	794.74	884.91	1802.05	909.01
cryst. size (mm)	$0.25 \times 0.21 \times 0.08$	$0.31 \times 0.23 \times 0.2$	$0.32 \times 0.14 \times 0.08$	0.2 imes 0.16 imes 0.11	$0.35 \times 0.15 \times 0.13$	$0.33 \times 0.16 \times 0.05$	$0.46 \times 0.16 \times 0.06$
cryst. syst.	monoclinic	monoclinic	monoclinic	orthorhombic	triclinic	triclinic	orthorhombic
space group	$P2_{1}/n$	$P2_{1}/n$	$P2_{1}/n$	$P2_{1}2_{1}2_{1}$	<i>P</i> -1	<i>P</i> -1	Pbca
a (Å)	12.40488(9)	10.9480(3)	11.09083(13)	12.0937(3)	12.1003(2)	12.5263(4)	17.1453(3)
<i>b</i> (Å)	20.31668(13)	15.5585(3)	15.64326(17)	17.3507(5)	19.4551(4)	12.8410(6)	19.0113(2)
c (Å)	17.70719(13)	20.1127(5)	20.3678(3)	19.0102(6)	21.1123(4)	16.3428(5)	30.2806(5)
α (deg)					113.1030(19)	83.991(3)	
β (deg)	109.9907(8)	94.156(2)	95.5136(10)		93.1405(17)	75.367(3)	
γ (deg)					91.4023(16)	62.619(4)	
V (Å ³)	4193.79(5)	3416.88(14)	3517.40(7)	3988.99(19)	4558.93(17)	2258.33(16)	9870.1(3)
Ζ	4	4	4	4	4	1	
μ (mm ⁻¹)	6.107	0.913	0.993	0.791	0.709	0.799	0.651

Table S1. Crystallographic data for 2Li, 2Na, 2K, 3Li, 3Na, 3K, and 4Li.

reflns. measd.	30391	28063	112187	21477	73117	36224	151804
unique reflns.	7442	7728	9067	7674	20675	10194	12235
R _{int}	0.045	0.046	0.046	0.047	0.045	0.047	0.059
refined params.	421	321	321	484	1176	563	664
R (on F , $F^2 > 2\sigma$)	0.027	0.035	0.024	0.037	0.037	0.040	0.040
$R_{\rm w}$ (on F^2 , all data)	0.066	0.078	0.046	0.072	0.080	0.081	0.094
goodness of fit	1.036	1.078	1.066	1.043	1.100	1.025	1.011
max, min electron	0.42,-0.37	0.77,-0.45	0.39,-0.27	0.76,-0.43	0.70,-0.44	0.48,-0.49	0.96,-0.58
density (e Å ⁻³)							

Figure S1. Polymeric structure of 2K. Selected bond lengths (Å) and angles (°): Sn(1)-P(1)
2.6341(4), Sn(1)-P(2) 2.6312(4), Sn(1)-P(3) 2.6352(4), P(1)-B(1) 1.9486(18), P(2)-B(2)
1.9454(18), P(3)-B(3) 1.945(2), K(1)...B(1) 3.0125(18), K(1)...B(2A) 3.0104(18),
K(1)...B(3B) 3.0617(19), K(1C)...B(2) 3.0104(18), K(1D)...B(2) 3.0618(19), K(1)-O(1)
2.6999(11), P(1)-Sn(1)-P(2) 103.646(12), P(1)-Sn(1)-P(3) 102.981(12), P(2)-Sn(1)-P(3)
103.026(12).

Figure S2. Asymmetric unit of **2Li** with 40% thermal ellipsoids and with minor disorder and C-bound H atoms omitted for clarity.

Figure S3. Asymmetric unit of 2Na with 40% thermal ellipsoids and with C-bound H atoms omitted for clarity.

Figure S4. Asymmetric unit of **2K** with 40% thermal ellipsoids and with C-bound H atoms omitted for clarity.

Figure S5. Asymmetric unit of **3Li** with 40% thermal ellipsoids and with minor disorder and C-bound H atoms omitted for clarity.

Figure S6. One of the two independent molecules in the asymmetric unit of **3Na** with 40% thermal ellipsoids and with minor disorder and C-bound H atoms omitted for clarity.

Figure S7. Asymmetric unit of **3K** with 40% thermal ellipsoids and with minor disorder and C-bound H atoms omitted for clarity.

Figure S8. Asymmetric unit of **4Li** with 40% thermal ellipsoids and with minor disorder and C-bound H atoms omitted for clarity.