Electronic Supplementary Information

Low-content SnO₂ nanodots on N-doped graphene: latticeconfinement preparation and high-performance lithium/sodium storage

Shuaipeng Liu,^a Yan Dong,^a Chengwei Deng,^a Feijiang Chen,^a Yu Su,^a Sheng-Yi Li^{b,*} and Sailong Xu^{a,*}

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: xusl@buct.edu.cn

^b Beijing Institute of Smart Energy, Beijing 102209, China. E-mail: lishengyi@geiri.sgcc.cn

Figure S1

Figure S1. (a) XRD spectrum of CoAlSn-LDH/GO precursor, (b) SEM image of CoAlSn-LDH/GO precursor.

Figure S2

dit and	Element	Weight%	Atomic%	C	Ν
Spectrum 1	C K	82.45	94.04		
	N K	1.61	1.57		
	O K	3.43	2.94	0	Sn
	Sn K	12.51	1.45	김 가장 관계 1997년 - 2017	
Z <u>hu</u> r	Totals	100			

Figure S2. The SEM/EDS element mapping of $SnO_2@N-rGO$.

Figure S3. The N-rGO counterpart prepared for comparison: (a) XRD pattern, and (b) Raman spectrum, and (c) N_2 adsorption/desorption isotherm curve (Insert shows a mesoporous size distribution).

Figure S4. Long-cycling performance of $SnO_2@N-rGO$ at 2000 mA g^{-1} for LIBs.

Figure S5

Figure S5. Long-cycling performance of $SnO_2@N-rGO$ at 2000 mA g^{-1} for SIBs.

Figure S6

Figure S6. Comparison of EIS between the SnO₂@N-rGO composite and the N-rGO counterpart for SIBs.

Figure S7

Figure S7. (a) SEM and (b) TEM image of the post-cycled $SnO_2@N-rGO$ electrode after 100 cycles at 0.1 A g⁻¹ for SIBs, without significant aggregation or volume expansion, as marked by the dotted line circles.

Table S1.

Comparison of cycling performance between SnO_2 @N-rGO and the reported SnO_2 -based anode nanomaterials for LIBs.

SnO ₂ -based materials	Current density /mA g ⁻¹	Specific capacity /mAh g ⁻¹	Cycles	References	
SnO ₂ /carbon@-	500	866	200	1	
void@carbon (SnO ₂ : 45.3 wt%)	500	000	200	1	
SnO ₂ NPs	1000	887	1000	2	
SnO ₂ /graphene (SnO ₂ : 54 wt%)	100	1420	90	3	
SnO ₂ /GNP (SnO ₂ : 80 wt%)	100	745	100	4	
SnO ₂ /MXenes	100	904.1	1000	5	
NC@SnO ₂ (SnO ₂ : 67.81wt%)	1000	750	100	6	
SnO ₂ @P@GO (SnO ₂ : 82.18 wt%)	100	550	200	7	
SnO ₂ @C (SnO ₂ : 91.77 wt%)	50	725	200	8	
SnO ₂ @CNFs (SnO ₂ : 18.1 wt%)	50	380.4	100	9	
$S_{n0} \otimes N_{n} = C_{0} (S_{n0} + 17.0 + 40/)$	100	1146.2	100	This work	
$\sin \phi_2(\omega_1) - 100 (\sin \phi_2, 17.9 \text{ wt/o}) =$	2000	428.5	300	I IIIS WULK	

Table S2.

Comparison	of cycling	performance	between	SnO ₂ @N-rGO	and the	reported	SnO ₂ -
based anode	nanomateri	ials for SIBs.					

SnO ₂ -based materials	Current density /mA g ⁻¹	Specific capacity /mAh g ⁻¹	Cycles	References	
NBT/C@SnO ₂ NFs	200	420.7	500	10	
SnO ₂ -NG (SnO ₂ : 50 wt%)	50	409.6	100	11	
SnO ₂ @NC (SnO ₂ : 55.5 wt%)	1000	212.6	3000	12	
SnO ₂ /rGO (SnO ₂ : 90.71 wt%)	200	204	1500	13	
SnO ₂ /CNT (SnO ₂ : 72 wt%)	100	630.4	100	14	
SnO _{2-x} /C nanofibers (SnO ₂ : 54 wt%)	1000	565	2000	15	
N-C@SnO ₂ (SnO ₂ : 67.81 wt%)	100	270	100	6	
SnO ₂ /graphene (SnO ₂ : 54 wt%)	200	650	90	3	
PCNF@SnO2@C (SnO ₂ : 38.5 wt%)	50	374	100	16	
SnO ₂ -PC (SnO ₂ : 74.47 wt%)	100	280.1	250	17	
SnO ₂ @NC-rGO	100	387	100		
(SnO ₂ : 17.9 wt%)	2000	150	1000	1 nis work	

References

- Y. Li, K. Lin, X. Qin, K. Zeng, Y. Liu, Y. Xia, F. Lv, H. Zhu, F. Kang and B. Li, *Carbon*, 2021, 183, 486-494.
- Y. Wang, N. Jiang, D. Pan, H. Jiang, Y. Hu and C. Li, *Chem. Eng. J.*, 2022, 437, 135422.
- W. Chen, K. Song, L. Mi, X. Feng, J. Zhang, S. Cui and C. Liu, J. Mater. Chem. A, 2017, 5, 10027-10038.
- M. Palanisamy, C. Jamison, X. Sun, Z. Qi, H. Wang and V. G. Pol, *Carbon*, 2021, 185, 608-618.
- 5. C. Zhao, Z. Wei, J. Zhang, P. He, X. Huang, X. Duan, D. Jia and Y. Zhou, *J. Alloys Compds.*, 2022, **907**, 164428.
- 6. J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun and J. Ma, Nano-Micro Lett., 2017,

10, 21.

- L. Zhang, K. Zhao, R. Yu, M. Yan, W. Xu, Y. Dong, W. Ren, X. Xu, C. Tang and L. Mai, *Small*, 2017, 13, 1603973.
- 8. A. A. Ambalkar, R. P. Panmand, U. V. Kawade, Y. A. Sethi, S. D. Naik, M. V. Kulkarni, P. V. Adhyapak and B. B. Kale, *New J. Chem.*, 2020, **44**, 3366-3374.
- 9. Z. Huang, H. Gao, Q. Wang, Y. Zhao and G. Li, Mate. Lett., 2017, 186, 231-234.
- L. Wang, C. Lin, G. Yang, N. Wang and W. Yan, *Electrochim. Acta*, 2022, 411, 140049.
- 11. L. Fan, X. Song, D. Xiong and X. Li, J. Electroanal. Chem., 2019, 833, 340-348.
- 12. Y. Cheng, S. Wang, L. Zhou, L. Chang, W. Liu, D. Yin, Z. Yi and L. Wang, *Small*, 2020, **16**, 2000681.
- 13. Z. Kong, X. Liu, T. Wang, A. Fu, Y. Li, P. Guo, Y.-G. Guo, H. Li and X. S. Zhao, *Appl. Surface Sci.*, 2019, **479**, 198-208.
- J. Cui, Z.-L. Xu, S. Yao, J. Huang, J.-Q. Huang, S. Abouali, M. A. Garakani, X. Ning and J.-K. Kim, *J. Mater. Chem. A*, 2016, 4, 10964-10973.
- D. Ma, Y. Li, H. Mi, S. Luo, P. Zhang, Z. Lin, J. Li and H. Zhang, *Angew. Chem. Int. Ed.*, 2018, 57, 8901-8905.
- M. Dirican, Y. Lu, Y. Ge, O. Yildiz and X. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 18387-18396.
- 17. Z. Huang, H. Hou, G. Zou, J. Chen, Y. Zhang, H. Liao, S. Li and X. Ji, *Electrochim. Acta*, 2016, **214**, 156-164.