Supporting Information

White Light *and* Colour-Tunable Emission from a Single Component Europium-1,8-Naphthalimide Thin Film

Alex T. O'Neil^a, Anaïs Chalard^b, Jenny Malmström^b, and Jonathan A. Kitchen*^a

a. School of Natural Sciences, Massey University, Auckland, New Zealand.

b. Department of Chemical and Materials Engineering, University of Auckland, Auckland 1142, New Zealand

Table of contents

Section 1 - Ligand Characterisation Data	S2-S10
Section 2 - Lanthanide Complex Characterisation Data	S11-S14
Section 3 - Photophysical Properties of 1H, $Eu(1)_3$ and $La(1)_3$	S15-S20
Section 4 - Self-Assembly Titration Data	S21
Section 5 - Colour-Tunable Emission	S22-S24
Section 6 - Spin Coated Films	S25-S27
Section 7 - References	S27

Section 1 - Ligand Characterisation Data

Figure S2. ¹³C NMR spectrum (75 MHz, DMSO-d₆) of A.

Figure S3. LRMS m/z = 294.95 [A + H]⁺ (calc. for $C_{17}H_{15}N_2O_3^+$, 295.11), m/z = 316.95 [A + H]⁺ (calc. for $C_{17}H_{15}N_2O_3^+$, 317.19)

Figure S4 IR spectrum of A.

Figure S5. UV-visible absorption spectrum of A (0.01 mM, MeOH).

Figure S7. ¹³C NMR spectrum (75 MHz, DMSO-d₆) of **B**.

Figure S8. LRMS $m/z = 281.05 [B + H]^+$ (calc. for $C_{15}H_{12}N_4O_2^+$, 281.10).

Figure S10. UV-visible absorption spectrum of B (0.01 mM, MeOH).

Figure S14. IR spectrum of 1Bz.

Figure S15. UV-visible absorption spectrum of 1Bz (0.01 mM, MeOH).

Figure S17. ¹³C NMR spectrum (75 MHz, DMSO-d₆) of 1H.

Figure S18. LRMS m/z = 485.10 $[1H + H]^+$ (calc. for C₂₅H₂₁N₆O₅⁺, 485.16) and m/z = 507.00 $[1H + Na]^+$ (calc. for C₂₅H₂₀N₆O₅Na⁺, 507.14).

Figure S19. IR spectrum of 1H.

Figure S20. UV-visible absorption spectrum of 1H (0.01 mM, MeOH).

Figure S21. ¹H NMR of **1H**, **1Bz**, **A** and **B** (300 MHz, DMSO-d₆). Abbreviations: Nap-a for ortho and para protons of **Nap**, Nap-b for meta protons of **Nap**, Py for pyridine ring, t for 1, 2,3-triazole, and Bz for benzyl ring. CH₂ in bold indicates methylene associated with the signal.

Figure S22. IR spectra of 1H, $Eu(1)_3$ and $La(1)_3$.

Figure S23. UV-visible absorption of 1H, $Eu(1)_3$ and $La(1)_3$ (0.01 mM, MeOH).

Figure S25. (Top left) HRMS $m/z = 824.1980 [Eu(1)_3 + 2Na]^{2+}$. (Top right) Calc. for $(C_{75}H_{57}N_{18}O_{15}EuNa_2)^{2+}$, 824.1630. (Bottom left) HRMS $m/z = 1625.3545 [Eu(1)_3 + Na]^+$. (Bottom right) Calc. for $(C_{75}H_{57}N_{18}O_{15}EuNa)^+$, 1625.3367.

Figure S27. (Left) HRMS $m/z = 817.1818 [La(1)_3 + 2Na]^{2+}$. (Right) Calc. for $(C_{75}H_{57}N_{18}O_{15}LaNa_2)^{2+}$, 817.1549.

Figure S28. ¹H NMR spectrum (300 MHz, DMSO-d₆) of La(1)₃ (bottom) and **1H** (top). ¹H NMR of La(1)₃ sho *is* s gn f cant do *in* f e d sh ft in the NH s gna (0.71 ppm) and a corresponding upf e d shift in the methy enellinker (CH₂-NH, 0.18 ppm), previously observed in s m an PDC systems indicative of La³⁺ coordination in the NO₂ pocket. Additionally, the pyridyl aromatic proton is gna s experienced shifts resulting in the single multiplet pyridyl signal in **1H** splitting into three separate distinct signals, *i*/h ch is suggestive of overall C₃ symmetry within the La³⁺ coordination sphere.

Section 3 - Photophysical Properties of 1H, Eu(1)₃ and La(1)₃

Figure S29. Fluorescent emission (λ_{ex} =340 nm) and excitation spectra (λ =390 nm) spectra of Ligand **1H**, intermediate **C** and precursor **B** (0.01 mM, MeOH)

Figure S30. La(1)₃ fluorescence spectra (0.01 mM, MeOH).

Figure S31. Eu(1)₃ fluorescence spectra (0.01 mM, MeOH).

Figure S32. Eu(1)₃ phosphorescence spectrum (0.01 mM, MeOH).

Figure S33. Lifetime of Eu(1)₃ complex fit with single exponential (Top) 616 nm (Bottom) 594 nm (0.01 mM, MeOH).

Table S1. Lifetime of $Eu(1)_3$ complex fit with single exponential (0.01 mM, MeOH).

Complex	Single Exponential (ms)	Average (ms)
Eu(1) ₃ solution MeOH (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$)	1.177	
	1.168	1.175
	1.179	
Eu(1) ₃ solution MeOH (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$)	1.055	
	1.063	1.059
	1.059	

Quantum Yields

Quantum yield measurements were determined by the dilute comparison method² using relative standards $Cs_3[Eu(dpa)_3]\cdot 8H_2O$, complex in a 0.1 M Tri-HCl buffer solution (pH \approx 7.45) and quinine sulfate in 0.5 M H₂SO₄, with known quantum yields of $\Phi_{ref} = 24 \pm 2.5$ %, and $\Phi_{ref} = 0.546$ % respectively.^{3,4,5} $Cs_3[Eu(dpa)_3]\cdot 9H_2O$ was used for Eu(1)₃ and quinine sulfate was used for the 1,8-naphthalmide emission. Barrier slit widths remained the same between measurements for different compounds with 1.5, 3 nm excitation and emission widths. Excitation wavelength was the same for all measurements with the standard 279 nm excitation wavelength being used for Eu^{3+} emissions and 366 nm for quinine sulfate and 1,8-naphthalimide emissions. Complexes were dissolved in a 1:1 MeOH:CH₂Cl₂ and then diluted into MeOH.

Estimated overall quantum yields $\Phi_{Ln}^L = \Phi_x$ were calculated according to the following equation 1. Here grad refer to the slope of plotted emission area vs absorbance (emission area was taken from specific emission peaks, Eu(1)₃ (${}^5D_0 \rightarrow {}^7F_2$), and 1,8-naphthalimide excimer and monomer broad emissions vs quinine sulfate), *n* refers to refractive index of the solution (a refractive index of *n* = 1.3295 was found for MeOH:CH₂Cl₂ solution), and subscript are ref for reference and x for sample.³

$$\Phi_{x} = \Phi_{std} \left(\frac{grad_{x}}{grad_{ref}} \times \left(\frac{n_{x}^{2}}{n_{ref}^{2}} \right) \right) (1)$$

Radiative lifetime (τ^{rad}) of Eu(1)₃ was estimated by equation 2 which assumes that the magnetic dipole of Eu³⁺ (⁵D₀ \rightarrow ⁷F₁) is independent of its coordination environment. ³ Abbreviations refer to; *n* for refractive index, $\frac{I_{MD}}{I_{tot}}$ is the ratio of area under the Eu³⁺ (⁵D₀ \rightarrow ⁷F₁) to the integrated total emission (J=0-6), and $A_{MD,0}$ is the spontaneous emission probability of the Eu³⁺ (⁵D₀ \rightarrow ⁷F₁) transition (14.65 s⁻¹). ³

$$\tau^{rad} = \frac{1}{A_{MD,0}n^3} \left(\frac{I_{MD}}{I_{tot}} \right) (2)$$

From this intrinsic quantum yields (Φ_{Ln}^{Ln}) can be estimated with equation 3 using observed lifetime (τ_{obs}) and in turn used to find the sensitization efficiency (n_{sens}) with equation 4.³

$$\Phi_{Ln}^{Ln} = \frac{\tau_{obs}}{\tau^{rad}} \tag{3}$$

$$n_{sens} = \frac{\Phi_{Ln}^L}{\Phi_{Ln}^{Ln}} (4)$$

Table S2. Quantum yield results for Eu³⁺ centred emission.

Complex	Φ^L_{Ln}	$ au_{obs}$ (ms)	$ au_{rad}$ (ms)	Φ_{Ln}^{Ln}	n _{sens}
Eu(1) ₃	7.6 %	1.059	4.998	21.2 %	35.9 %

Table S3. Fluorescence quantum yield results for 1,8-napthalimide centred emission.

Complex	Φ_f
1H	12.4%
Eu(1) ₃	15.0%
La(1) ₃	15.0 %

Figure S34. Concentration vs absorbance for 1H, $Eu(1)_3$ and $La(1)_3$ in MeOH.

Figure S35. Integrated intensity vs absorbance of 1H, $Eu(1)_3$ and $La(1)_3$ in MeOH (1.5 and 3 nm excitation and emission widths, λ_{ex} = 366 nm).

Figure S36. Integrated intensity vs absorbance of $Eu(1)_3$ in MeOH (1.5 and 3 nm excitation and emission widths, λ_{ex} = 279 nm).

Figure S37. UV-visible absorption titration of 1H with Eu(CF₃SO₃)₃ from 0 to 4.5 equivalents, done in triplicate (0.02 mM, MeOH).

Figure S38. Monitoring changes in UV-visible absorption spectra at specific wavelengths (232, 274 and 333 nm) during titration of **1H** (0.02 mM, MeOH) with $Eu(CF_3SO_3)_3$ from 0 to 1 equivalents.

Figure S39. *CIE* chromaticity diagram with different overall colours cable of $Eu(1)_3$ in a 0.01 mM MeOH solution dependent on λ_{ex} and fluorescence spectra at important λ_{ex} . Calculated 1931 CIE coordinates, 235 nm x,y = 0.25, 0.21; 240 nm x,y = 0.28, 0.23; 255 nm x,y = 0.47, 0.29; 260 nm x,y = 0.51, 0.30; 275 nm x,y = 0.54, 0.30; 280-4 nm x,y = 0.50, 0.30; 285 nm x,y = 0.48, 0.29; 286 nm x,y = 0.45, 0.29; 287 nm x,y = 0.42, 0.28; 288 nm x,y = 0.38, 0.27; 289 nm x,y = 0.34, 0.26; 290 nm x,y = 0.30, 0.24; 291 nm x,y = 0.27, 0.24; 293 nm x,y = 0.23, 0.22; 296 nm x,y = 0.20, 0.22 and 330 nm x,y = 0.18, 0.20.

Figure S40. CIE chromaticity diagram with different overall colours capable of $Eu(1)_3$ in a 1 mM MeOH solution dependent on λ_{ex} and fluorescence spectra at important λ_{ex} . Calculated 1931 CIE coordinates, 230 nm x,y = 0.22, 0.24; 240 nm x,y = 0.23, 0.25; 250 nm x,y = 0.33, 0.28; 251 nm x,y = 0.34, 0.28; 252 nm x,y = 0.35, 0.28; 253 nm x,y = 0.36, 0.28; 254 nm x,y = 0.37, 0.29; 256 nm x,y = 0.38, 0.29; 257 nm x,y = 0.39, 0.29; 258-260 nm x,y = 0.40, 0.9; 261-264 nm x,y = 0.42, 0.29; 265-266 nm x,y = 0.43, 0.29; 267-275 nm x,y = 0.44, 0.29; 277 nm x,y = 0.42, 0.28; 280 nm x,y = 0.41, 0.28; 285 nm x,y = 0.34, 0.27; 290 nm x,y = 0.24, 0.24 and 300 nm x,y = 0.18, 0.22.

Figure S41. CIE chromaticity diagram with different overall colours capable of $Eu(1)_3$ in a5 mM MeOH solution dependent on λ_{ex} and fluorescence spectra at important λ_{ex} . Calculated 1931 CIE coordinates, 230 nm x,y = 0.20, 0.25; 240 nm x,y = 0.20, 0.25; 250 nm x,y = 0.24, 0.27; 260 nm x,y = 0.28, 0.27; 261 nm x,y = 0.28, 0.27; 261 nm x,y = 0.29, 0.27; 262-273 x,y = 0.30, 0.27; 275 nm x,y = 0.30, 0.26; 277 nm x,y = 0.29, 0.26; 280 nm x,y = 0.28, 0.26; 285 nm x,y = 0.25, 0.25; 290 nm x,y = 0.20, 0.23 and 300 nm x,y = 0.18, 0.23.

Figure S42. CIE chromaticity diagram with different overall colours capable of $Eu(1)_3$ in a 10 mM MeOH solution dependent on λ_{ex} and fluorescence spectra at important λ_{ex} . Calculated 1931 CIE coordinates, 230 nm x,y = 0.19, 0.23; 240 nm x,y = 0.19, 0.23; 250 nm x,y = 0.21, 0.24; 255 nm x,y = 0.24, 0.25; 260 nm x,y = 0.25, 0.25; 265 nm x,y = 0.27, 0.26; 270 nm x,y = 0.28, 0.26; 275 nm x,y = 0.26, 0.26; 280 nm x,y = 0.26, 0.28; 290 nm x,y = 0.20, 0.24 and 300 nm x,y = 0.17, 0.23..

Figure S43. (Top) CIE chromaticity diagram with different overall colours capable of solid $Eu(1)_3$ dependent on λ_{ex} . (Bottom) shows different fluorescence profiles of solid $Eu(1)_3$ at important excitation wavelengths. Calculated 1931 CIE coordinantes, 250 nm x,y = 0.21, 0.25; 251 nm x,y = 0.23, 0.25; 253 nm x,y = 0.24, 0.27; 255 nm x,y = 0.26, 0.28; 260 nm x,y = 0.28, 0.29; 265 nm x,y = 0.39, 0.29; 270 nm x,y = 0.31, 0.29; 271-272 nm x,y = 0.31, 0.29 ; 273-278 nm x,y = 0.32, 0.29; 278-280 nm x,y = 0.31, 0.29 ; 281-286 nm x,y = 0.30, 0.29; 287 nm x,y = 0.29, 0.29; 288 nm x,y = 0.28, 0.29; 289 nm x,y = 0.26, 0.29; 290 nm x,y = 0.24, 0.28; 295 nm x,y = 0.20, 0.28; 300 nm x,y = 0.19, 0.27; 310 nm x,y = 0.18, 0.26 and 350 nm x,y = 0.18, 0.26;

Figure S44. UV-visible absorption spectra of spin coated $Eu(1)_3$ film and $Eu(1)_3$ solution (0.01 mM MeOH)

Figure S45. AFM image of spin coated film with average particle height of 130 nm with a stdev 38 nm.

Figure S46. AFM image of spin coated film with average particle height of 137 nm with a stdev 44 nm.

Figure S47. CIE chromaticity diagram with different overall colours capable of $Eu(1)_3$ in the 4000 rpm spin coated film dependent on λ_{ex} and fluorescence spectra of important λ_{ex} . Calculated 1931 CIE coordinates, 250 nm x,y = 0.21, 0.21; 260 nm x,y = 0.28, 0.26; 261 nm x,y = 0.29, 0.26; 262-263 nm x,y = 0.30, 0.27; 264-265 nm x,y = 0.31, 0.27; 266-269 nm x,y = 0.32, 0.28; 270-272 nm x,y = 0.33, 0.28; 273-278 nm x,y = 0.34, 0.28; 279-283 nm x,y = 0.33, 0.28; 284 nm x,y = 0.32, 0.28; 285 nm x,y = 0.31, 0.28; 286 nm x,y = 0.30, 0.28; 287 nm x,y = 0.29, 0.27; 288 nm x,y = 0.28, 0.27; 289 nm x,y = 0.26, 0.27; 290 nm x,y = 0.25, 0.27; 295 nm x,y = 0.20, 0.26 and 300-350 nm x,y = 0.19, 0.26

Section 7 - References

- 1. LED ColourCalculator (Version 7.7), OSRAM Sylvain, inc.
- 2. Crosby, G. A.; Demas, J. N., J. Phys. Chem. 1971, 75, 991-1024.
- 3. A. S. Chauvin, F. Gumy, D. Imbert and J. C. G. Bünzli, *Spectrosc. Lett*, 2004, **37**, 517-532.
- 4. A. S. Chauvin, F. Gumy, D. Imbert and J. C. G. Bünzli, Spectrosc. Lett., 2007, 40, 193-193.
- 5. A. Brouwer, Pure Appl. Chem., 2011, 83, 2213-2228.