Supplementary Information

Core-shell structured Mn₂SnO₄@Void@C as stable anode material

for lithium-ion batteries with long cycle life

Yuanlin Tong^a, Xiangyang Xu^{a,b,*}, Yanru Liu^{a,c}, Yunfei Yao^a, Dongsheng Chen^a and Chenyu Huang^a

^a School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

^b Hunan Key Laboratory of Mineral Materials and Applications, Changsha 410083, China

^c Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Figure Captions:

Fig. S1 XRD pattern of MnSn(OH)₆

Fig. S2 SEM image of MnSn(OH)₆

Fig. S3 TEM images of MnSn(OH)₆@SiO₂

Fig. S4 TEM images of $Mn_2SnO_4@SiO_2@C$

Fig. S5 TEM images of Mn₂SnO₄@C

Fig. S6 High-resolution XPS spectra of C 1s peak for $Mn_2SnO_4@C$ and $Mn_2SnO_4@Void@C$

Fig. S7 Galvanostatic discharge/charge curves of $Mn_2SnO_4@C$ (a) and Mn_2SnO_4 (b) for selected cycles at 100 mA g^{-1}

Fig. S8 Cyclic voltammetry (CV) curves of Mn₂SnO₄@C (a) and Mn₂SnO₄ (b) at a scan rate of 0.1 mV s⁻¹

Fig. S9 Corresponding relationships between $\omega^{-1/2}$ and Z' at a low frequency of Mn₂SnO₄, Mn₂SnO₄@C and Mn₂SnO₄@Void@C

Fig. S10 SEM images of cross-sectional morphology for $Mn_2SnO_4@Void@C$ electrode after 0 (a) and 1000 (b) discharge-charge cycles

Fig. S11 SEM images of surface morphology for Mn_2SnO_4 , $Mn_2SnO_4@C$ and $Mn_2SnO_4@Void@C$ electrode after 0 (a, b and c, respectively) and 1000 (e, d and f, respectively) charge-discharge cycles at 1.0 A g⁻¹

Table Captions :

Table S1. Vibration types of absorption peaks on FTIR spectra

Table S2. Fitted EIS results of raw materials

Table S3. Electrochemical performance comparison of Mn₂SnO₄@Void@C and other Sn-based materials for lithium-ion half cell

E-mail address: xuxiangyang@csu.edu.cn

^{*} Corresponding author: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

Fig. S1 XRD pattern of MnSn(OH)₆ precursor

Fig.S2 SEM images of MnSn(OH)₆

Fig.S3 TEM images of MnSn(OH)₆@SiO₂

Fig. S4 TEM images of Mn₂SnO₄@SiO₂@C

Fig. S5 TEM images of Mn₂SnO₄@C

Fig. S6 High-resolution XPS spectra of C 1s peak for $Mn_2SnO_4@C$ and $Mn_2SnO_4@Void@C$

Fig. S7 Cyclic voltammetry (CV) curves of $Mn_2SnO_4@C$ (a) and Mn_2SnO_4 (b) at a scan rate of 0.1 mV s⁻¹

Fig. S8 Galvanostatic discharge/charge curves of Mn₂SnO₄@C (a) and Mn₂SnO₄ (b) for selected cycles at 100 mA

g⁻¹

Fig. S9 Corresponding relationships between $\omega^{-1/2}$ and Z' at low frequency of Mn₂SnO₄, Mn₂SnO@C and Mn₂SnO₄₄@Void@C

Fig. S10 SEM images of cross-sectional morphology for $Mn_2SnO_4@Void@C$ electrode after 0 (a) and 1000 (b) discharge-charge cycles

Fig. S11. SEM images of surface morphology for Mn_2SnO_4 , $Mn_2SnO_4@C$ and $Mn_2SnO_4@Void@C$ electrode after 0 (a, b and c, respectively) and 1000 (e, d and f, respectively) charge-discharge cycles at 1000 mA g⁻¹

Wavenumber (cm ⁻¹)	Chemical bond	Vibration type
499	Mn-O-Mn	bending vibration
541	Sn-O-Sn	bending vibration
887	C-H	bending vibration
1257	C-0	stretching vibration
1598	C=C	stretching vibration
3372	-OH	stretching vibration

Table S1 Vibration types of absorption peaks on FTIR spectra

Sample	Rs (Ω)	Rct (Ω)	CPEct-T (µF)	CPEct-P (µF)
Mn ₂ SnO ₄	6.021	353.3	1.6325E-5	0.79427
Mn ₂ SnO ₄ @C	3.265	90.69	1.0669E-5	0.86296
$Mn_2SnO_4@Void@C$	4.04	51.35	1.4388E-5	0.82645

Table S2 Fitted EIS results of as-prepared materials

Materials	Current density (A g ⁻¹)	Cycles	Reversible capacity (mAh g ⁻¹)	References
Sn@Mn ₂ SnO ₄ -NC	0.1	100	1039.5	1
$Mn_2SnO_4@Carbon Nanotube$	0.1	100	611	2
Mn ₂ SnO ₄ /Sn/C Cubes	0.5	100	908	3
Mn₂SnO₄@RGO	0.1	100	542	4
Flake-like Mn ₂ SnO ₄ /C	2.0	100	428	5
SnO₂/Mn₂SnO₄@C	0.2	100	1293	6
Bouquet-Like Mn₂SnO₄@GS	0.4	200	1070	7
	0.1	150	783.1	
Mn ₂ SnO ₄ @Void@C	1.0	1000	553.3	This work
	2.0	400	419.6	

Table S3 Electrochemical performance comparison of Mn₂SnO₄@Void@C and other Sn-based materials for lithium-ion half cell

Supplementary Information References:

- 1. S. Wan, Q. Liu, M. Cheng, Y. Chen and H. Chen, ACS Appl. Mater. Interfaces, 2021, 13, 38278-38288.
- 2. G. N. Suresh babu and N. Kalaiselvi, J. Alloys Compd., 2021, 889, 161679.
- K. Liang, T. Y. Cheang, T. Wen, X. Xie, X. Zhou, Z. W. Zhao, C. C. Shen, N. Jiang and A. W. Xu, *The J. Phys. Chem. C*, 2016, **120**, 3669-3676.
- 4. L. Cui, X. Li, C. Yin, J. Wang, S. Li, Q. Zhang and S. Kang, *Dalton Trans.*, 2019, 48, 504-511.
- 5. X. Shi, X. Lin, S. Liu, A. Li, X. Chen, J. Zhou, Z. Ma and H. Song, *Chem. Eng. J.*, 2019, **372**, 269-276.
- 6. J. Tian, L. Yang, L. Zha, R. Wang, S. Huang, G. Xu, T. Wei, H. Li, J. Cao and X. Wei, *J. Power Sources*, 2021, **506**, 230243.
- 7. W. U. Rehman, Y. Xu, X. Sun, I. Ullah, Y. Zhang and L. Li, ACS Appl. Mater. Interfaces, 2018, 10, 17963-17972.