Supporting Information

Synthesis and combined experimental/theoretical structural study of a comprehensive set of Pd/NHC complexes with *o*-, *m*-, and *p*- halogen-substituted aryl groups (X = F, Cl, Br, CF₃)

Roman O. Pankov[§], Darya O. Prima[§], Alexander Yu. Kostyukovich[§], Mikhail E. Minyaev[§], Valentine P. Ananikov^{§*}

§ Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia;

*e-mail: val@ioc.ac.ru; http://AnanikovLab.ru

NMR spectra of the obtained compounds	4
ESI-HRMS spectra of the obtained compounds	29
X-ray crystallographic data and refinement details	40
Computational and refinement details	58
References	64

Synthesized imidazolium salts **2** a-l, and the yields of the isolated products. ^a Method A, ^b Method B, ^c Method C, ^d Method D.

Figure S1. ¹H NMR spectrum of 2c. Solvent: DMSO-*d*₆, 300 MHz.

Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum of 2c. Solvent: DMSO-*d*₆, 75 MHz.

Figure S3. ¹⁹F{¹H} NMR spectrum of **2c**. Solvent: DMSO- d_6 , 282.4 MHz. Standard: C₆F₆ with respect to CFCl₃.

Figure S4. ¹H NMR spectrum of 2d. Solvent: DMSO-*d*₆, 300 MHz.

Figure S6. ¹H NMR spectrum of 2e. Solvent: DMSO-*d*₆, 300 MHz.

Figure S8. ¹H NMR spectrum of 2f. Solvent: DMSO-*d*₆, 300 MHz.

Figure S10. ¹H NMR spectrum of 2g. Solvent: D₂O, 300 MHz.

Figure S12. ¹H NMR spectrum of 2h. Solvent: DMSO-*d*₆, 300 MHz.

Figure S14. ¹H NMR spectrum of 2i. Solvent: DMSO-*d*₆, 300 MHz.

Figure S16. ¹H NMR spectrum of 2j. Solvent: DMSO-*d*₆, 600 MHz.

Figure S18. ¹⁹F{¹H} NMR spectrum of **2j**. Solvent: DMSO- d_6 , 282.4 MHz. Standard: C₆F₆ with respect to CFCl₃.

Figure S21. ¹⁹F{¹H} NMR spectrum of **2k**. Solvent: DMSO- d_6 , 282.4 MHz. Standard: C₆F₆ with respect to CFCl₃.

 $\frac{10}{10} - \frac{10}{10} - \frac{20}{10} - \frac{30}{10} - \frac{40}{10} - \frac{50}{10} - \frac{60}{10} - \frac{70}{100} - \frac{80}{100} - \frac{90}{100} - \frac{110}{120} - \frac{130}{130} - \frac{140}{150} - \frac{160}{100} - \frac{170}{100} - \frac{190}{100} - \frac{200}{200} - \frac{210}{220} - \frac{220}{220} - \frac{210}{220} - \frac{220}{10} - \frac{200}{100} - \frac{100}{100} - \frac{100}{10} - \frac{100$

Figure S25. ¹H NMR spectrum of 3. Solvent: CDCl₃, 300 MHz.

Figure S26. ¹³C{¹H} NMR spectrum of 3. Solvent: CDCl₃, 75 MHz.

Figure S27. ¹H NMR spectrum of 3c. Solvent: CDCl₃, 300 MHz.

Figure S29. ¹⁹F $\{^{1}H\}$ NMR spectrum of **3c**. Solvent: CDCl₃, 282.4 MHz. Standard: C₆F₆ with respect to CFCl₃.

Figure S30. ¹H NMR spectrum of 3d. Solvent: CDCl₃, 300 MHz.

Figure S31. ${}^{13}C{}^{1}H$ NMR spectrum of 3d. Solvent: CDCl₃, 75 MHz.

Figure S32. ¹H NMR spectrum of 3e. Solvent: CDCl₃, 300 MHz.

Figure S33. ${}^{13}C{}^{1}H$ NMR spectrum of 3e. Solvent: CDCl₃, 75 MHz.

Figure S34. ¹H NMR spectrum of 3f. Solvent: CDCl₃, 300 MHz.

Figure S35. $^{13}C{^{1}H}$ NMR spectrum of 3f. Solvent: CDCl₃, 75 MHz

Figure S36. ¹H NMR spectrum of 3g. Solvent: CDCl₃, 300 MHz.

Figure S37. ${}^{13}C{}^{1}H$ NMR spectrum of 3g. Solvent: CDCl₃, 75 MHz.

Figure S38. ¹H NMR spectrum of **3h**. Solvent: CDCl₃, 300 MHz.

Figure S39. ¹³C{¹H} NMR spectrum of **3h**. Solvent: CDCl₃, 75 MHz.

Figure S40. ¹H NMR spectrum of 3i. Solvent: CDCl₃, 300 MHz.

Figure S41. ¹³C{¹H} NMR spectrum of **3i**. Solvent: CDCl₃, 75 MHz.

Figure S42. ¹H NMR spectrum of 3j. Solvent: CDCl₃, 600 MHz.

Figure S43. ¹³C{¹H} NMR spectrum of 3j. Solvent: CDCl₃, 151 MHz.

Figure S44. ¹⁹F $\{^{1}H\}$ NMR spectrum of **3j**. Solvent: CDCl₃, 282.4 MHz. Standard: C₆F₆ with respect to CFCl₃.

Figure S45. ¹H NMR spectrum of 3k. Solvent: CDCl₃, 300 MHz.

Figure S47. ¹⁹F $\{^{1}H\}$ NMR spectrum of 3k. Solvent: CDCl₃, 282.4 MHz. Standard: C₆F₆ with respect to CFCl₃.

Figure S48. ¹H NMR spectrum of 3l. Solvent: CDCl₃, 300 MHz.

Figure S49. ¹³C{¹H} NMR spectrum of 31. Solvent: CDCl₃, 75 MHz.

Figure S50. ¹⁹F $\{^{1}H\}$ NMR spectrum of 31. Solvent: CDCl₃, 282.4 MHz. Standard: C₆F₆ with respect to CFCl₃.

ESI-HRMS spectra of the obtained compounds.

Figure S51. Experimental and theoretical ESI-(+)HRMS spectrum of **2c** in CH₃CN solution: experimental peak $[M+H]^+ = 257.0884$ Da, calculated for $C_{15}H_{11}F_2N_2 = 257.0885$, $\Delta = 0.4$ ppm.

Figure S52. Experimental and theoretical ESI-(+)HRMS spectrum of **2d** in CH₃CN solution: experimental peak $[M+H]^+ = 289.0297$ Da, calculated for C₁₅H₁₁Cl₂N₂ = 289.0294, $\Delta = 1.0$ ppm.

Figure S53. Experimental and theoretical ESI-(+)HRMS spectrum of **2e** in CH₃CN solution: experimental peak $[M+H]^+ = 289.0299$ Da, calculated for C₁₅H₁₁Cl₂N₂ = 289.0294, $\Delta = 1.7$ ppm.

Figure S54 Experimental and theoretical ESI-(+)HRMS spectrum of **2f** in CH₃CN solution: experimental peak $[M+H]^+ = 289.0299$ Da, calculated for C₁₅H₁₁Cl₂N₂ = 289.0294, $\Delta = 1.7$ ppm.

Figure S55. Experimental and theoretical ESI-(+)HRMS spectrum of **2g** in CH₃CN solution: experimental peak $[M+H]^+ = 378.9275$ Da, calculated for C₁₅H₁₁Br₂N₂ = 378.9264, $\Delta = 2.9$ ppm.

Figure S56. Experimental and theoretical ESI-(+)HRMS spectrum of **2h** in CH₃CN solution: experimental peak $[M+H]^+ = 378.9257$ Da, calculated for C₁₅H₁₁Br₂N₂ = 378.9264, $\Delta = 1.8$ ppm.

Figure S57. Experimental and theoretical ESI-(+)HRMS spectrum of **2i** in CH₃CN solution: experimental peak $[M+H]^+ = 378.9261$ Da, calculated for $C_{15}H_{11}Br_2N_2 = 378.9264$, $\Delta = 0.8$ ppm.

Figure S58. Experimental and theoretical ESI-(+)HRMS spectrum of **2j** in CH₃CN solution: experimental peak $[M+H]^+ = 357.0815$ Da, calculated for $C_{17}H_{11}F_6N_2 = 357.0821$, $\Delta = 1.7$ ppm.

Figure S59. Experimental and theoretical ESI-(+)HRMS spectrum of **2k** in CH₃CN solution: experimental peak $[M+H]^+ = 357.0823$ Da, calculated for $C_{17}H_{11}F_6N_2 = 357.0821$, $\Delta = 0.6$ ppm.

Figure S60. Experimental and theoretical ESI-(+)HRMS spectrum of **21** in CH₃CN solution: experimental peak $[M+H]^+ = 357.0819$ Da, calculated for $C_{17}H_{11}F_6N_2 = 357.0821$, $\Delta = 0.6$ ppm.

Figure S61. Experimental and theoretical ESI-(+)HRMS spectrum of **3** in CH₃CN solution: experimental peak [M-2Cl-C₆H₅N+CH₃CN]⁺ = 366.0236 Da, calculated for C₁₅H₁₁N₂PdCH₃CN = 366.0224, Δ = 3.3 ppm.

Figure S62. Experimental and theoretical ESI-(+)HRMS spectrum of **3c** in CH₃CN solution: experimental peak $[M]^+$ = 477.9938 Da, calculated for C₂₀H₁₅ClF₂N₃Pd = 477.9955, Δ = 3.5 ppm.

Figure S63. Experimental and theoretical ESI-(+)HRMS spectrum of **3d** in CH₃CN solution: experimental peak $[M]^+$ = 509.9350 Da, calculated for C₂₀H₁₅Cl₃N₃Pd = 509.9362, Δ = 2.3 ppm.

Figure S64. Experimental and theoretical ESI-(+)HRMS spectrum of **3e** in CH₃CN solution: experimental peak $[M]^+$ = 509.9347 Da, calculated for C₂₀H₁₅Cl₃N₃Pd = 509.9362, Δ = 2.9 ppm.

Figure S65. Experimental and theoretical ESI-(+)HRMS spectrum of **3f** in CH₃CN solution: experimental peak $[M]^+$ = 509.9376 Da, calculated for C₂₀H₁₅Cl₃N₃Pd = 509.9362, Δ = 2.7 ppm.

Figure S66. Experimental and theoretical ESI-(+)HRMS spectrum of **3g** in CH₃CN solution: experimental peak $[M]^+$ = 599.8323 Da, calculated for C₂₀H₁₅Br₂ClN₃Pd = 599.8333, Δ = 1.7 ppm.

Figure S67. Experimental and theoretical ESI-(+)HRMS spectrum of **3h** in CH₃CN solution: experimental peak $[M]^+$ = 599.8326 Da, calculated for C₂₀H₁₅Br₂ClN₃Pd = 599.8333, Δ = 1.2 ppm.

Figure S68. Experimental and theoretical ESI-(+)HRMS spectrum of **3i** in CH₃CN solution: experimental peak $[M]^+$ = 599.8336 Da, calculated for C₂₀H₁₅Br₂ClN₃Pd = 599.8333, Δ = 0.5 ppm.

Figure S69. Experimental and theoretical ESI-(+)HRMS spectrum of **3j** in CH₃CN solution: experimental peak $[M + H]^+$ 578.9970 = Da, calculated for C₂₂H₁₆ClF₆N₃Pd = 578.9969, $\Delta = 0.2$ ppm.

Figure S70. Experimental and theoretical ESI-(+)HRMS spectrum of **3k** in CH₃CN solution: experimental peak $[M]^+$ = 577.9892 Da, calculated for C₂₂H₁₅ClF₆N₃Pd = 577.9891, Δ = 0.2 ppm.

Figure S71. Experimental and theoretical ESI-(+)HRMS spectrum of **31** in CH₃CN solution: experimental peak $[M]^+$ = 577.9897 Da, calculated for C₂₂H₁₅ClF₆N₃Pd = 577.9891, Δ = 1.0 ppm.

X-ray crystallographic data and refinement details

X-ray diffraction data for 3, 3d, 3e, 3g, 3iA and 3k were collected at 100K on a Bruker Quest D8 diffractometer equipped with a Photon-III area-detector (shutterless φ - and ω -scan technique), using graphite-monochromatized Mo K_{α} -radiation. The intensity data of collected reflections were integrated by the SAINT program.¹ Absorption correction based on measurements of equivalent reflections was carried out semi-empirically by multi-scan methods, using SADABS and TWINABS.² X-ray diffraction data for **3i**, **3j**, **3l** were collected at 100K on a Rigaku Synergy S diffractometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterless ω-scan technique), using monochromatized Mo K_{α} -radiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.³ The SHELXTL program suite⁴ for 3, 3d, 3e, 3g, 3iA, 3k and the *OLEX2* program⁵ for 3i, 3j and 3l were used for further calculations. The structures were solved by dual methods using SHELXT⁶ and refined by the full-matrix leastsquares method on on F^2 using SHELXL-2018.⁷ Positions of all non-hydrogen atoms were found from the electron density-difference map; the atoms were refined with individual anisotropic displacement parameters. Hydrogen atoms in 3 and two hydrogen atoms belonging to the minor component of the disordered pyridine ligand in 3i were placed in ideal calculated positions (d(C-H)=0.950Å) and refined as riding atoms with relative isotropic displacement parameters: $U_{iso}(H)=1.2U_{ea}(C)$. Positions of all other hydrogen atoms were found from the electron densitydifference map; the H-atoms were refined with individual isotropic displacement parameters. Disorders in 3 and in 3j were modeled by applying the same isotropic displacement parameters for disordered similar atoms (EADP); similar bond distances were restrained to be equal within 0.003Å. Disorder of the CF₃ group in **3k** and **3l** was modeled by applying the EADP SHELXL instruction; the C-F bond distances were restrained to be equal within 0.003Å and F..F distances were set to be equal within 0.03Å (SADI). The Cl/Br disorder in **3iA** was modeled by applying the same isotropic displacement parameters only.

Crystals **3e** and **3l** were refined as 2-component non-merohedral twins. The *SHELXTL* program suite⁴ and the *Mercury* program⁸ were used for molecular graphics herein and in the manuscript, correspondingly.

Crystal data, data collection and structure refinement details for **3**, **3d**, **3e**, **3g**, **3i**, **3iA**, **3j**, **3k** and **3l** are summarized in Table S1. The structures have been deposited at the Cambridge Crystallographic Data Center with the reference CCDC numbers 2238012, 2217756, 2211738, 2211739, 2211740, 2217757, 2238013, 2211741, 2211742, correspondingly; they also contain the supplementary crystallographic data. These data can be obtained free of charge from the CCDC *via* http://www.ccdc.cam.ac.uk/data request/cif

Identification code	3	3d	3e
Empirical formula	$C_{20}H_{17}Cl_2N_3Pd$	C ₂₀ H ₁₅ Cl ₄ N ₃ Pd	$C_{20}H_{15}Cl_4N_3Pd$
Formula weight	476.66	545.55	545.55
Temperature, K	100(2)	100(2)	100(2)
Wavelength, Å	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	P 1	$P2_1/c$	C2/c
Unit cell dimensions			
a, Å	11.1768(2)	13.5230(3)	9.0789(6)
b, Å	13.3155(2)	11.9245(3)	14.4880(10)
c, Å	14.9335(3)	14.5709(4)	16.3561(12)
α, °	116.1390(10)	90	90
β, °	93.4870(10)	115.6740(10)	103.025(2)
γ, °	103.2910(10)	90	90
Volume, Å ³	1908.02(6) Å ³	2117.66(9)	2096.0(3)
Z' / Z	2 / 4	1 / 4	0.5 / 4
Density calcd., g·cm ⁻³	1.659	1.711	1.729
μ , mm ⁻¹	1.261	1.392	1.406
F(000)	952	1080	1080
Crystal size, mm	0.37×0.30×0.20	0.18×0.10×0.09	0.36×0.35×0.21
θ range, °	2.203-36.340	2.307-33.216	2.698-35.664
Index ranges	-18<=h<=18,	-20<=h<=20,	-14<=h<=14,
	-22<=k<=22,	-18<=k<=18,	0<=k<=23,
	-24<=1<=24	-22<=1<=22	0<=l<=26
Reflections			
collected	151435	86820	4887^{*}
independent [R _{int}]	18465 [0.0326]	8115 [0.1122]	4887 [0 [*]]
observed	16154	5400	4654
Completeness to $\theta_{full} / \theta_{max}$	0.999 / 0.999	1.000 / 1.000	0.997 / 0.998
T _{max} / T _{min}	0.4977 / 0.4243	0.5659 / 0.5116	0.438 / 0.338
Data/restraints/parameters	18465 / 211 / 664	8115 / 6 / 314	4887 / 0 / 161
Goodness-of-fit on F ²	1.040	1.017	1.113
R1 / wR2 indices (I> $2\sigma(I)$)	0.0236 / 0.0498	0.0461 / 0.0884	0.0222 / 0.0533
R1 / wR2 indices (all data)	0.0307 / 0.0530	0.0883 / 0.1027	0.0247 / 0.0546
Extinction coefficient	0.00146(13)	0.0022(3)	0.00106(15)
$\Delta \rho(\bar{e})_{max}$ / $\Delta \rho(\bar{e})_{min}$, \bar{e} ·Å ⁻³	0.641 /-1.040	1.150 / -1.569	0.708 / -0.867
CCDC number	2238012	2217756	2211738

Table S1. Crystal data and structure refinement for 3, 3d, 3e, 3g, 3i, 3iA, 3j, 3k and 3l.

Identification code	3g	3i	3iA
Empirical formula	$C_{20}H_{15}Br_2Cl_2N_3Pd$	$C_{20}H_{15}Br_2Cl_2N_3Pd$	$C_{20}H_{15}Br_{2.41}Cl_{1.59}N_3Pd$
Formula weight	634.47	634.47	652.65
Temperature, K	100(2)	100.0(1)	100(2)
Wavelength, Å	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/c$	I2/a (C2/c)	C2/c (I2/a)
Unit cell dimensions			
a, Å	13.4034(3)	6.96427(16)	22.0556(4)
b, Å	12.0835(3)	14.9658(3)	15.0381(3)
c, Å	14.6627(3)	21.8956(5)	6.98560(10)
β, °	115.2760(10)	98.197(2)	100.1093(6)
Volume, Å ³	2147.41(9)	2258.77(9)	2280.97(7)
Z' / Z	1 / 4	0.5 / 4	0.5 / 4
Density calcd., g·cm ⁻³	1.962	1.866	1.900
μ, mm ⁻¹	4.846	4.607	5.230
F(000)	1224	1224	1253.5
Crystal size, mm	0.98×0.39×0.21	0.17×0.10×0.05	0.20×0.17×0.12
θ range, °	2.280-36.995	2.722-33.997	3.124 to 34.351°.
Index ranges	-22<=h<=22,	-10<=h<=10,	-34<=h<=34,
	-20<=k<=20,	-22<=k<=23,	-23<=k<=23,
	-24<=l<=24	-34<=l<=34	-11<=1<=11
Reflections			
collected	96150	26930	42511
independent [R _{int}]	10918 [0.0283]	4576 [0.0329]	4772 [0.0361]
observed	10170	3895	4059
Completeness to θ_{full} / θ_{max}	0.999 / 1.000	0.999 / 0.995	0.998 / 0.999
T _{max} / T _{min}	0.276 / 0.123	1.000 / 0.636	0.6471 / 0.4765
Data/restraints/parameters	10918 / 0 / 311	4576 / 0 / 159	4772 / 0 / 163
Goodness-of-fit on F ²	1.064	1.044	1.043
R1 / wR2 indices (I> $2\sigma(I)$)	0.0249 / 0.0592	0.0238 / 0.0572	0.0230 / 0.0495
R1 / wR2 indices (all data)	0.0277 / 0.0603	0.0323 / 0.0598	0.0316 / 0.0529
Extinction coefficient	0.00214(13)	-	-
$\Delta ho(\bar{e})_{max}$ / $\Delta ho(\bar{e})_{min}$, \bar{e} ·Å ⁻³	1.892 / -1.371	1.170 / -0.555	0.719 / -0.794
CCDC number	2211739	2211740	2217757

Table S1 (cont.). Crystal data and structure refinement for 3, 3d, 3e, 3g, 3i, 3iA, 3j, 3k and 3l.

Identification code	3ј	3k	31
Empirical formula	$C_{22}H_{15}Cl_2F_6N_3Pd$	$C_{22}H_{15}Cl_2F_6N_3Pd$	$C_{22}H_{15}Cl_2F_6N_3Pd$
Formula weight	612.67	612.67	612.67
Temperature, K	100.0(2)	100(2)	100.0(1)
Wavelength, Å	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Orthorhombic	Monoclinic
Space group	Pbcn	Fdd2	I2/a (C2/c)
Unit cell dimensions			
a, Å	18.1381(3)	36.2866(7)	6.9530(3)
b, Å	16.7952(3)	8.7886(2)	14.9603(5)
c, Å	7.55530(10)	14.5007(3)	22.6625(8)
β, °	90	90	95.962(3)
Volume, Å ³	2301.59(6)	4624.40(17)	2344.58(15)
Z' / Z	0.5 / 4	0.5 / 8	0.5 / 4
Density calcd., g·cm ⁻³	1.768	1.760	1.736
μ , mm ⁻¹	1.103	1.098	1.083
F(000)	1208	2416	1208
Crystal size, mm	0.14×0.05×0.03	0.47×0.23×0.12	0.19×0.04×0.03
θ range, °	2.246-35.829	2.245-32.595	2.723-35.755
Index ranges	-28<=h<=27,	-54<=h<=54,	-11<=h<=11,
	-25<=k<=26,	-13<=k<=13,	-24<=k<=24,
	-12<=1<=11	-21<=l<=21	-36<=]<=36
Reflections			
collected	29059	49547	9367 [*]
independent [R _{int}]	4845 [0.0296]	4224 [0.0270]	9367 [0*]
observed	4017	4142	6894
Completeness to θ_{full} / θ_{max}	0.999 / 0.897	1.000 / 1.000	0.999 / 0.931
T _{max} / T _{min}	0.974 / 0.911	0.747 / 0.666	1.403 / 0.644
Data / restraints / parameters	4845 / 3 / 193	4224 / 74 / 208	9367 / 85 / 208
Goodness-of-fit on F ²	1.040	1.070	1.034
R1 / wR2 indices (I> $2\sigma(I)$)	0.0259 / 0.0627	0.0143 / 0.0350	0.0381 / 0.1180
R1 / wR2 indices (all data)	0.0356 / 0.0662	0.0150 / 0.0355	0.0536 / 0.1292
Absolute struct. parameter	-	-0.020(6)	-
Extinction coefficient	-	0.00020(3)	-
$\Delta \rho(\bar{e})_{max} / \Delta \rho(\bar{e})_{min}, \bar{e} \cdot A^{-3}$	0.630 / -0.727	0.319 / -0.573	1.296 / -0.791
CCDC number	2238013	2211741	2211742

Table S1 (cont.). Crystal data and structure refinement for 3, 3d, 3e, 3g, 3i, 3iA, 3j, 3k and 3l.

* Due to the refinement of 3e and 3k as regular non-merohedral twins, equivalent reflections were merged by a conventional way, setting the collected reflection number to be equal to the number of independent reflections and, therefore, making $R_{int}=0$.

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, \ wR2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \ \Sigma [w(F_o^2)^2]]^{1/2}$

Crystal structure of 3

The asymmetric unit of **3** contains two symmetrically non-equivalent molecules. The first one exhibits a disordered pyridine molecule. The second one is entirely disordered over two positions.

Fig. S72. Two crystallographically non-equivalent molecules of 3 in the unit cell (p=50%).

Fig. S73. The molecular structure of the first molecule of **3** (p=50%) exhibiting pyridine disorder. The disorder ratio for atoms N3, C16..C20 / N3A, C16A..C20A is 0.504(5) : 0.496(5).

Fig. S74. Overlay of two components of disorder for the second crystallographically non-equivalent molecule of **3** (p=50%). The disorder ratio is 0.5065(15): 0.4935(15).

Fig. S75. Two components of disorder of the second molecule of 3 (p=50%).

Pd1-C1	1.9599(11)	C4-C9	1.3907(15)	N3-C16	1.330(2)
Pd1-N3	2.0789(17)	C4-C5	1.3918(15)	N3-C20	1.331(2)
Pd1-N3A	2.1063(17)	C5-C6	1.3903(18)	C16-C17	1.388(2)
Pd1-Cl1	2.3228(3)	C6-C7	1.3885(18)	C17-C18	1.386(2)
Pd1-Cl2	2.3090(3)	C7-C8	1.3904(16)	C18-C19	1.387(2)
N1-C1	1.3578(14)	C8-C9	1.3941(16)	C19-C20	1.387(2)
N1-C3	1.3947(14)	C10-C15	1.3882(16)	N3A-C20A	1.351(2)
N1-C4	1.4353(14)	C10-C11	1.3891(16)	N3A-C16A	1.351(2)
N2-C1	1.3542(14)	C11-C12	1.3901(17)	C16A-C17A	1.390(2)
N2-C2	1.3934(15)	C12-C13	1.3877(18)	C17A-C18A	1.379(2)
N2-C10	1.4377(14)	C13-C14	1.3860(19)	C18A-C19A	1.382(2)
C2-C3	1.3451(17)	C14-C15	1.3908(18)	C19A-C20A	1.392(2)
Pd2-C21	1.970(2)	C22-C23	1.336(3)	C32-C33	1.3874(19)
Pd2-N6	2.094(6)	C24-C29	1.388(2)	C33-C34	1.3879(18)
Pd2-Cl3	2.3038(11)	C24-C25	1.3917(19)	C34-C35	1.3911(18)
Pd2-Cl4	2.2999(16)	C25-C26	1.3895(19)	N6-C36	1.345(2)
N4-C21	1.349(3)	C26-C27	1.389(2)	N6-C40	1.347(2)
N4-C23	1.396(2)	C27-C28	1.389(2)	C36-C37	1.391(2)
N4-C24	1.435(2)	C28-C29	1.388(2)	C37-C38	1.380(2)
C21-N5	1.363(2)	C30-C35	1.3893(19)	C38-C39	1.377(2)
N5-C22	1.391(3)	C30-C31	1.3910(18)	C39-C40	1.389(2)
N5-C30	1.434(3)	C31-C32	1.3888(19)		
Pd2A-C21A	1.967(2)	C22A-C23A	1.334(4)	C32A-C33A	1.3877(19)
Pd2A-N6A	2.095(6)	C24A-C29A	1.387(2)	C33A-C34A	1.390(2)
Pd2A-Cl3A	2.2892(11)	C24A-C25A	1.3911(19)	C34A-C35A	1.3913(19)
Pd2A-Cl4A	2.3000(16)	C25A-C26A	1.389(2)	N6A-C36A	1.345(2)
N4A-C21A	1.349(3)	C26A-C27A	1.389(2)	N6A-C40A	1.348(2)
N4A-C23A	1.397(2)	C27A-C28A	1.389(2)	C36A-C37A	1.390(2)
N4A-C24A	1.435(2)	C28A-C29A	1.388(2)	C37A-C38A	1.380(2)
C21A-N5A	1.362(2)	C30A-C31A	1.3883(19)	C38A-C39A	1.376(2)
N5A-C22A	1.392(3)	C30A-C35A	1.3918(19)	C39A-C40A	1.389(2)
N5A-C30A	1.431(3)	C31A-C32A	1.3900(19)		

 Table S2. Selected bond distances (Å) for 3.

Crystal structure of 3d

Fig. S76. The molecular structure of 3d (p=50%).

Pd1-C1	1.956(3)	N3-C20	1.360(4)	C10-C15	1.392(4)
Pd1-N3	2.112(3)	C13-C5	1.738(4)	C11-C12	1.384(4)
Pd1-Cl1	2.3128(7)	Cl4-C11	1.738(3)	C12-C13	1.387(5)
Pd1-Cl2	2.2935(8)	C2-C3	1.339(4)	C13-C14	1.374(5)
N1-C1	1.351(4)	C4-C5	1.384(4)	C14-C15	1.389(4)
N1-C3	1.397(4)	C4-C9	1.390(4)	C16-C17	1.387(5)
N1-C4	1.429(4)	C5-C6	1.395(5)	C17-C18	1.384(6)
N2-C1	1.351(4)	C6-C7	1.377(6)	C18-C19	1.370(6)
N2-C2	1.399(4)	C7-C8	1.370(6)	C19-C20	1.380(5)
N2-C10	1.436(4)	C8-C9	1.380(5)		
N3-C16	1.342(4)	C10-C11	1.390(4)		

 Table S3. Selected bond distances (Å) for 3d.

Crystal structure of 3e

Complex 3e is located on a 2-fold rotation axis passing through atoms C11, N2, Pd1 and C1.

Fig. S77. The molecular structure of **3e** (p=50%). Symmetry transformation to generate equivalent atoms: (A) -x+1, +y, -z+1/2.

Pd1-Cl1	2.3002(3)	N2-C9	1.3471(12)	C5-C6	1.387(2)
Pd1-C1	1.9645(14)	C2-C2A	1.346(2)	C6-C7	1.393(2)
Pd1-N2	2.0601(13)	C3-C4	1.3896(16)	C7-C8	1.3896(18)
N1-C1	1.3616(12)	C3-C8	1.3929(17)	C9-C10	1.3808(16)
N1-C2	1.3928(14)	C4-C5	1.3904(16)	C10-C11	1.3902(14)
N1-C3	1.4302(14)	Cl2-C5	1.7355(13)		

Table S4. Selected bond distances (Å) for 3e.

Symmetry transformation to generate equivalent atoms: (A) -x+1, +y, -z+1/2.

Crystal structure of 3g

Fig. S78. The molecular structure of 3g (p=50%).

Pd1-Cl1	2.3145(3)	N2-C10	1.4307(17)	C10-C15	1.393(2)
Pd1-Cl2	2.2917(3)	N3-C20	1.340(2)	C10-C11	1.3941(19)
Pd1-C1	1.9514(12)	N3-C16	1.3516(18)	C11-C12	1.388(2)
Pd1-N3	2.1145(12)	C2-C3	1.3458(19)	C12-C13	1.390(2)
Br1-C5	1.8914(17)	C4-C9	1.391(2)	C13-C14	1.388(2)
Br2-C11	1.8939(14)	C4-C5	1.3922(19)	C14-C15	1.388(2)
N1-C1	1.3529(16)	C5-C6	1.389(2)	C16-C17	1.387(2)
N1-C3	1.3966(17)	C6-C7	1.383(3)	C17-C18	1.385(3)
N1-C4	1.4294(17)	C7-C8	1.389(3)	C18-C19	1.375(3)
N2-C1	1.3513(16)	C8-C9	1.388(2)	C19-C20	1.392(2)
N2-C2	1.3972(17)				

Table S5. Selected bond	distances (Å	Å) for 3 g	5 .
-------------------------	--------------	-------------------	------------

Crystal structure of 3i

Complex **3i** is located on a 2-fold rotation axis passing through atoms C11, N2, Pd1 and C1.

Fig. S79. The molecular structure of **3i** (p=50%). Symmetry transformation to generate equivalent atoms: (A) -x+1/2, +y, -z+1.

Pd1-Cl1	2.3163(3)	N1-C3	1.4303(17)	C6-C7	1.389(2)
Pd1-C1	1.9500(18)	C2-C2A	1.348(3)	C7-C8	1.391(2)
Pd1-N2	2.0765(16)	C3-C4	1.392(2)	N2-C9	1.3401(17)
Br1-C6	1.8992(14)	C3-C8	1.3948(19)	C9-C10	1.389(2)
C1-N1	1.3538(15)	C4-C5	1.391(2)	C10-C11	1.383(2)
N1-C2	1.3951(17)	C5-C6	1.389(2)		

Table S6. Selected bond distances (Å) for 3i.

Symmetry transformation to generate equivalent atoms: (A) -x+1/2, +y, -z+1.

Crystal structure of 3iA

Complex **3iA** is located on a 2-fold rotation axis passing through atoms C11, N2, Pd1 and C1.

Fig. S80. The asymmetric unit **3iA** (p=50%). The Cl1/Br1 ratio is 0.7951(15):0.2049(15), correspondingly.

Fig. S81. The molecular structure of **3i** (p=50%). Symmetry transformation to generate equivalent atoms: (A) -x+1, +y, -z+1/2.

Pd1-Cl1	2.325(7)	N1-C2	1.3955(18)	C4-C5	1.391(2)
Pd1-Br1	2.394(11)	N1-C3	1.4340(18)	C5-C6	1.391(2)
Pd1-C1	1.9472(19)	N2-C9	1.3373(18)	C6-C7	1.387(2)
Pd1-N2	2.0780(17)	C2-C2#1	1.347(3)	C7-C8	1.391(2)
Br2-C6	1.8942(15)	C3-C8	1.388(2)	C9-C10	1.386(2)
N1-C1	1.3542(16)	C3-C4	1.392(2)	C10-C11	1.381(2)

Table S7. Selected bond distances (Å) for 3i.

Symmetry transformation to generate equivalent atoms: (A) -x+1, +y, -z+1/2.

The structures **3i** and **3iA** are isostructural. Due to crystal structure determination of **3i** and **3iA** on different diffractometers and different software, their cell settings slightly differ.

The presence of the Cl/Br disorder at the Pd atom directly comes from X-ray data, including analysis of the electron density-difference (deformation) map. The found X-ray structure of **3iA** corresponds to a mixture of three co-crystalized complexes: (3Br-NHC)(py)PdCl₂, (3Br-NHC)(py)PdClBr, (3Br-NHC)(py)PdBr₂, the ratio of which remains unknown. Based on the Cl/Br ratio found by the X-ray diffraction analysis, the content of the (3Br-NHC)(py)PdCl₂ complex is between 59% and 79%.

Crystal structure of 3j

Complex 3j is located on a 2-fold rotation axis passing through atoms C12, N2, Pd1 and C1.

Fig. S82. The molecular structure of **3j** (p=50%). The disorder ratio for pyridine molecule (left) is 0.910(3) : 0.090(3) for atoms C10, C11 / C10A, C11A. The disorder is omitted (right); the symmetry transformation to generate equivalent atoms: (A) -x+1, +y, -z+1/2.

Pd1-Cl1	2.2988(3)	C3-C8	1.3899(17)	C9-F3	1.3422(17)
Pd1-C1	1.9601(17)	C4-C5	1.3944(18)	N2-C10	1.3455(19)
Pd1-N2	2.0943(16)	C4-C9	1.5017(18)	N2-C10A	1.345(4)
N1-C1	1.3555(14)	C5-C6	1.3891(18)	C10-C11	1.392(2)
N1-C2	1.3929(16)	C6-C7	1.3876(19)	C11-C12	1.375(2)
N1-C3	1.4377(16)	C7-C8	1.3892(18)	C10A-C11A	1.392(4)
C2-C2B	1.352(3)	C9-F1	1.3334(16)	C11A-C12	1.375(4)
C3-C4	1.3978(17)	C9-F2	1.3354(16)		

Table S8. Selected bond distances (Å) for 3j.

The symmetry transformation to generate equivalent atoms: (B) -x+1, +y, -z+1/2.

Crystal structure of 3k

Complex 3k is located on a 2-fold rotation axis passing through atoms C11, N2, Pd1 and C1.

Fig. S83. The molecular structure of **3k** (p=50%). The CF₃-disorder is omitted. Symmetry transformation to generate equivalent atoms: (A) -x+1/2, -y+3/2, +z.

Fig. S84. The molecular structure of **3k** (p=50%). The CF₃-disorder ratio for atoms F1, F2, F3 / F1A, F2A, F3A / F1B, F2B, F3B (and for atoms F1C, F2C, F3C / F1AA, F2AA, F3AA / F1BA, F2BA, F3BA) is 0.617(4) : 0.131(4) : 0.252(4). Symmetry transformation to generate equivalent atoms: -x+1/2, -y+3/2, +z.

Pd1-Cl1	2.3022(3)	C4-C5	1.391(2)	C9-F2A	1.346(4)
Pd1-C1	1.971(3)	C5-C6	1.390(3)	C9-F3A	1.346(4)
Pd1-N2	2.064(3)	C5-C9	1.497(3)	C9-F1B	1.345(3)
C1-N1	1.359(2)	C6-C7	1.384(3)	C9-F2B	1.347(3)
N1-C2	1.394(2)	C7-C8	1.391(3)	C9-F3B	1.346(3)
N1-C3	1.434(2)	C9-F1	1.343(2)	N2-C10	1.341(2)
C2-C2#1	1.343(4)	C9-F2	1.353(3)	C10-C11	1.382(2)
C3-C4	1.385(2)	C9-F3	1.346(2)	C11-C12	1.388(2)
C3-C8	1.391(2)	C9-F1A	1.347(4)		

Table S9. Selected bond distances (Å) for 3k.

Symmetry transformation to generate equivalent atoms: (A) -x+1/2, -y+3/2, +z.

Crystal structure of 31

Complex **31** is located on a 2-fold rotation axis passing through atoms C11, N2, Pd1 and C1.

Fig. S85. The molecular structure of **31** (p=50%). The CF₃-disorder is omitted. Symmetry transformation to generate equivalent atoms: (A) -x+3/2, +y, -z+1.

Fig. S86. The molecular structure of **31** (p=50%). The CF₃-disorder ratio for atoms F1, F2, F3 / F1A, F2A, F3A / F1B, F2B, F3B (and for atoms F1C, F2C, F3C / F1AA, F2AA, F3AA / F1BA, F2BA, F3BA) is 0.720(4) : 0.140(4) : 0.140(4). Symmetry transformation to generate equivalent atoms: -x+3/2, +y, -z+1.

Table S10. Selected bond distances (Å)	for 31
--	---------------

Pd1-Cl1	2.3140(6)	C4-C5	1.393(3)	C9-F2A	1.347(3)
Pd1-C1	1.948(2)	C5-C6	1.384(3)	C9-F3A	1.345(3)
Pd1-N2	2.076(2)	C6-C7	1.397(3)	C9-F1B	1.347(3)
C1-N1	1.357(2)	C6-C9	1.501(3)	C9-F2B	1.347(3)
N1-C2	1.394(2)	C7-C8	1.393(3)	C9-F3B	1.345(3)
N1-C3	1.431(2)	C9-F1	1.350(2)	N2-C10	1.339(2)
C2-C2#1	1.351(4)	C9-F2	1.345(2)	C10-C11	1.389(3)
C3-C4	1.391(3)	C9-F3	1.346(2)	C11-C12	1.389(3)
C3-C8	1.392(3)	C9-F1A	1.346(3)		

Symmetry transformation to generate equivalent atoms: -x+3/2, +y, -z+1.

code	substituent	Plane 1 defined by atoms	Plane 2 defined by atoms	Angle
3a_1*	o-F	N1 C1 N2 C2 C3	C4C9	56.67(5)
3a_1*	o-F	N1 C1 N2 C2 C3	C10C15	63.02(5)
3a_2*	o-F	N1A C1A N2A C2A C3A	C4AC9A	59.19(6)
3a_2*	o-F	N1A C1A N2A C2A C3A	C10AC15A	52.38(7)
3a_2*	o-F	N1B C1B N2B C2B C3B	C4BC9B	50.55(7)
3a_2*	o-F	N1B C1B N2B C2B C3B	C10BC15B	54.14(7)
3d	o-Cl	N1 C1 N2 C2 C3	C4C9	66.37(13)
3d	o-Cl	N1 C1 N2 C2 C3	C10C15	64.32(10)
3g	o-Br	N1 C1 N2 C2 C3	C4C9	67.53(6)
3g	o-Br	N1 C1 N2 C2 C3	C10C15	66.23(5)
3j	o-CF ₃	N1 C1 N1#1 C2 C2#1	C3C8	67.12(3)
3e	m-Cl	N1 C1 N1#1 C2 C2#1	C3C8	39.14(5)
3k	m-CF ₃	N1 C1 N1#2 C2 C2#2	C3C8	45.60(5)
3i	p-Br	N1 C1 N1#3 C2 C2#3	C3C8	43.99(4)
3iA	p-Br	N1 C1 N1#1 C2 C2#1	C3C8	44.07(5)
31	m-CF ₃	N1 C1 N1#4 C2 C2#4	C3C8	42.72(6)
3	-	N1 C1 N2 C2 C3	C4C9	44.77(5)
3	-	N1 C1 N2 C2 C3	C10C15	50.72(5)
3	-	N4 C21 N5 C22 C23	C24C29	46.7(4)
3	-	N4 C21 N5 C22 C23	C30C35	44.07(15)
3	-	N4A C21A N5A C22A C23A	C24AC29A	25.8(5)
3	-	N4A C21A N5A C22A C23A	C30AC35A	49.3(4)

 Table S11.
 Selected dihedral angles (°).

*The structures of two polymorph modifications of **3a** (**3a_1** and **3a_2**) were determined earlier.⁹ Crystals of **3a_2** contained two non-equivalent molecules.

Symmetry transformations to generate equivalent atoms: #1 -x+1, y, -z+1/2; #2 -x+1/2, -y+3/2, z; #3 -x+1/2, y, -z+1; #4 -x+3/2, y, -z+1.

Computational and refinement details

Table S12. Energies and populations of occupied sp_{LP} and vacant p^* orbitals of NHCs with various halogen substituents °

		Free	NHC			
NHC	sj	ŨLР	<i>p</i> *			
	E ^a	occ ^b	Е	occ		
IPh	-0.28657	1.91322	-0.05392	0.63994		
<i>o</i> -F-IPh	-0.29195	1.91466	-0.05886	0.64313		
<i>m</i> -F-IPh	-0.29612	1.91276	-0.06323	0.63586		
<i>p</i> -F-IPh	-0.29351	1.91302	-0.06091	0.64506		
o-Cl-IPh	-0.29088	1.9153	-0.05629	0.63635		
<i>m</i> -Cl-IPh	-0.29879	1.91229	-0.06594	0.63607		
<i>p</i> -Cl-IPh	-0.29879	1.91287	-0.06602	0.64058		
o-Br-IPh	-0.28951	1.91543	-0.05471	0.63564		
<i>m</i> -Br-IPh	-0.29844	1.91218	-0.06563	0.6362		
<i>p</i> -Br-IPh	-0.29901	1.91276	-0.0662	0.63991		
o-CF3-IPh	-0.29423	1.91556	-0.05955	0.6368		
<i>m</i> -CF ₃ -IPh	-0.30297	1.91214	-0.0701	0.63499		
<i>p</i> -CF ₃ -IPh	-0.30654	1.91314	-0.0734	0.63314		

^a Energy in Hartree; ^b occupancy.

Table S13. Stabilization energies associated with donor-acceptor interactions of NBOs involved in the Pd-NHC bond formation

Pd/NHC	$E^{(2)}\sigma(sp_{LP}\rightarrow 5s_{Pd}^*)$	$E^{(2)}\pi (4d_{yz} \rightarrow p^*)$	$E^{(2)}\sigma + E^{(2)}\pi$
IPh-3	157.7	43.8	201.5
<i>o</i> -F-3a	157.6	44.0	201.6
<i>m</i> -F-3b	156.2	45.2	201.4
<i>p</i> - F -3c	157.9	43.7	201.6
o-Cl-3d	160.0	45.9	206.0
<i>m</i> -Cl-3e	156.0	45.1	201.1
p-Cl-3f	156.5	44.5	201.0
o-Br-3g	160.6	46.1	206.6

<i>m</i> -Br-3h	156.0	45.0	201.1
<i>p</i> -Br-3i	156.3	44.5	200.8
<i>о</i> -СF ₃ -3j	160.1	45.9	206.0
<i>m</i> -CF ₃ -3k	155.6	44.6	200.2
<i>p</i> -CF ₃ -31	155.0	45.9	200.9

Table S14. Geometric parameters of complexes Pd(NHC)

Pd/NHC	d ^a	$arphi^{ ext{b}}$
IPh-3	1.94133	43.8
<i>o</i> -F-3a	1.94031	44.4
<i>m</i> -F-3b	1.93992	42.9
<i>p</i> -F-3c	1.94076	44.6
o-Cl-3d	1.93226	55.6
<i>m</i> -Cl-3e	1.93993	43.1
<i>p</i> -Cl-3f	1.94042	43.3
<i>o</i> -Br-3g	1.93120	58.0
<i>m</i> -Br-3h	1.94000	43.2
<i>p</i> -Br-3i	1.94045	43.1
o-CF3-3j	1.93167	58.9
<i>m</i> -CF ₃ -3k	1.94066	42.6
<i>p</i> -CF ₃ -31	1.93929	42.4

^a Pd-NHC bond length; ^b dihedral angel between heterocyclic and phenyl rings.

Table S15. Dependence of the energies of donor-acceptor interaction of NBOs on the dihedral angle between the heterocyclic and phenyl rings (φ) in the complex **3**

φ , degrees	ΔΕ	$E^{(2)}\sigma(sp_{LP}\rightarrow 5s_{Pd}^*)$	$E^{(2)}\pi (4d_{yz} \rightarrow p^*)$	$E^{(2)}\sigma + E^{(2)}\pi$
0	6.5	141.95	39.31	181.26
10	5.0	145.68	40.18	185.86
20	2.7	150.37	41.12	191.49
30	0.9	153.66	42.2	195.86
40	0.1	156.61	43.29	199.9
43.8	0.0	157.7	43.8	201.5
50	0.2	159.8	44.6	204.46

60	1.0	163.0	45.8	208.79
70	2.3	165.7	46.6	212.29
80	3.4	167.4	47.1	214.4
90	3.9	167.9	47.2	215.11
100	3.5	166.9	47.1	214.01
110	2.3	164.66	46.58	211.24
120	1.1	162.13	45.68	207.81
130	0.2	159.57	44.58	204.15
140	0.0	156.96	43.42	200.38
150	0.8	154.1	42.3	196.39
160	2.7	150.37	41.12	191.49
170	5.0	145.67	40.17	185.84
180	6.5	141.95	39.31	181.26

		NHC fr	agment		Pd fragment			
Pd/NHC	sp	LP	p	*	40	l_{yz}	5	S
	E ^a	occ ^b	E	occ	E	occ	Е	occ
IPh-3	-0.32363	1.60784	-0.09982	0.78755	-0.19559	1.85797	0.10853	0.35323
<i>o</i> -F-3a	-0.32918	1.6091	-0.10438	0.78641	-0.20032	1.8572	0.10515	0.35236
<i>m</i> -F-3b	-0.33242	1.61507	-0.10812	0.78472	-0.20289	1.85151	0.11201	0.34482
<i>p</i> -F-3c	-0.33059	1.60709	-0.10683	0.78943	-0.20263	1.85932	0.10245	0.35315
o-Cl-3d	-0.32975	1.60602	-0.10354	0.78137	-0.19835	1.85544	0.09657	0.35709
<i>m</i> -Cl-3e	-0.33559	1.61675	-0.1109	0.78479	-0.20522	1.85061	0.11313	0.34131
p-Cl-3f	-0.33535	1.6106	-0.11133	0.78738	-0.20659	1.8554	0.10356	0.349
o-Br-3g	-0.32872	1.60503	-0.10235	0.78069	-0.19713	1.85567	0.0953	0.35846
<i>m</i> -Br-3h	-0.33548	1.61724	-0.11068	0.78485	-0.20495	1.85069	0.11331	0.3405
<i>p</i> -Br-3i	-0.3355	1.61099	-0.11145	0.78706	-0.2067	1.85497	0.10423	0.34844
<i>о</i> -СF ₃ -Зј	-0.33207	1.6065	-0.10549	0.78064	-0.20041	1.85525	0.09397	0.35692
<i>m</i> -CF ₃ -3k	-0.33989	1.62023	-0.11484	0.78405	-0.20869	1.84927	0.11464	0.33616
<i>p</i> -CF ₃ -31	-0.34241	1.61554	-0.11791	0.78377	-0.21216	1.84932	0.10345	0.34368

Table S1	6.	Energies	and	populations	of of	f NBOs	invo	olved	in th	e Pd	-NHC	bond	forma	ation
----------	----	----------	-----	-------------	-------	--------	------	-------	-------	------	------	------	-------	-------

^a Energy in Hartree; ^b occupancy.

Table S17. Changes in occupations of NBOs on passing from an isolated Pd atom and NHC ligand to Pd(NHC) complex

	NHC fragment		Pd fragment		
Pu/INIC	$sp_{ m LP}$	<i>p</i> *	$4d_{yz}$	5s	
IPh-3	-0.30538	0.14761	-0.14203	0.35323	
<i>o</i> -F-3a	-0.30556	0.14328	-0.1428	0.35236	
<i>m</i> -F-3b	-0.29769	0.14886	-0.14849	0.34482	
<i>p</i> -F-3c	-0.30593	0.14437	-0.14068	0.35315	
o-Cl-3d	-0.30928	0.14502	-0.14456	0.35709	
<i>m</i> -Cl-3e	-0.29554	0.14872	-0.14939	0.34131	
p-Cl-3f	-0.30227	0.1468	-0.1446	0.349	
o-Br-3g	-0.3104	0.14505	-0.14433	0.35846	
<i>m</i> -Br-3h	-0.29494	0.14865	-0.14931	0.3405	
<i>p</i> -Br-3i	-0.30177	0.14715	-0.14503	0.34844	
<i>о</i> -СF ₃ -3j	-0.30906	0.14384	-0.14475	0.35692	
<i>m</i> -CF ₃ -3k	-0.29191	0.14906	-0.15073	0.33616	
<i>p</i> -CF ₃ -31	-0.2976	0.15063	-0.15068	0.34368	

Table S18. Charge decomposition analysis (CDA) of Pd(NHC) complexes

Pd/NHC	d^{a}	b^{b}	r ^c	
IPh-3	0.153457	0.129527	-0.238228	
<i>o</i> -F-3a	0.146067	0.13022	-0.238752	
<i>m</i> -F-3b	0.151781	0.131173	-0.240521	
<i>p</i> -F-3c	0.151527	0.130673	-0.236573	
o-Cl-3d	0.132448	0.128735	-0.222571	
<i>m</i> -Cl-3e	0.151581	0.132046	-0.241462	
p-Cl-3f	0.151924	0.132338	-0.239966	
o-Br-3g	0.1347	0.128017	-0.219563	
<i>m</i> -Br-3h	0.151486	0.132061	-0.24136	
<i>p</i> -Br-3i	0.152089	0.132537	-0.240707	
<i>о</i> -СF ₃ -3j	0.133158	0.127928	-0.226303	

<i>m</i> -CF ₃ -3k	0.15186	0.133199	-0.242993	
<i>p</i> -CF ₃ -31	0.150448	0.134034	-0.243415	

^a The amount of electrons donated from NHC fragment to Pd atom; ^b the amount of electrons back donated from Pd atom to NHC fragment; ^c Closed-shell interaction between occupied orbitals of NHC fragment and Pd atom (electron repulsive effect).

Table S19. Estimation of relative σ - and π -contributions to the charge transfer (CT) from NHC to Pd atom and to the Pd-NHC bond energy

Pd/NHC	CT NBO ^a		CT CDA ^b		E ⁽²⁾ SOPT ^c	
	σ- donation, %	π-back- donation, %	σ- donation, %	π-back- donation, %	E ⁽²⁾ σ, %	E ⁽²⁾ π, %
IPh-3	68.3	31.7	54.2	45.8	78.3	21.7
<i>o</i> -F-3a	68.2	31.8	52.9	47.1	78.2	21.8
<i>m</i> -F-3b	66.7	33.3	53.6	46.4	77.5	22.5
<i>p</i> -F-3c	68.5	31.5	53.7	46.3	78.3	21.7
o-Cl-3d	68.1	31.9	50.7	49.3	77.7	22.3
<i>m</i> -Cl-3e	66.4	33.6	53.4	46.6	77.6	22.4
p-Cl-3f	67.6	32.4	53.4	46.6	77.9	22.1
o-Br-3g	68.3	31.7	51.3	48.7	77.7	22.3
<i>m</i> -Br-3h	66.4	33.6	53.4	46.6	77.6	22.4
<i>p</i> -Br-3i	67.5	32.5	53.4	46.6	77.8	22.2
<i>o</i> -CF ₃ -3j	68.1	31.9	51.0	49.0	77.7	22.3
<i>m</i> -CF ₃ -3k	65.9	34.1	53.3	46.7	77.7	22.3
<i>p</i> -CF ₃ -31	66.4	33.6	52.9	47.1	77.2	22.8

^a Percentage of charge transfer by σ -donation and π -backdonation, calculated from the difference in populations of the occupied *sp*_{LP} and *p** orbitals in the Pd(NHC) complex and in the isolated NHC ligand and Pd atom (see table S13); ^b Percentage of charge transfer by σ -donation and π -backdonation, calculated in the framework of charge decomposition analysis (CDA, see table S14); ^c Percentage of stabilization energies E⁽²⁾ σ and E⁽²⁾ π , calculated in the framework of second order perturbation theory analysis of fock matrix in NBO basis (SOPT).

References

1. Bruker. APEX-III. Bruker AXS Inc., Madison, Wisconsin, USA, 2020.

2. L. Krause, R. Herbst-Irmer, G. Sheldrick and D. Stalke, Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. *J. Appl. Cryst.* **2015**, 48, 3–10.

3. CrysAlisPro. Version 1.171.42. Rigaku Oxford Diffraction, 2021.

4. G. Sheldrick, A short history of SHELX. Acta Cryst. 2008, A64, 112-122.

5. O. Dolomanov, L. Bourhis, R. Gildea, J. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* 2009, **42**, 229-341.

6. G. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination. *Acta Cryst.* 2015, A71, 3-8.

7. G. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.

8. C. Macrae, I. Sovago, S. Cottrell, P. Galek, P. McCabe, E. Pidcock, M. Platings, G. Shields, J. Stevens, M. Towler and P. Wood, Mercury 4.0: from visualization to analysis, design and prediction. *J. Appl. Cryst.* 2020, **53**, 226-235.

9. D. Prima, R. Pankov, A. Kostyukovich, M. Minyaev, J. Burykina, V. Ananikov, Synthesis and characterization of Pd/NHC_F complexes with fluorinated aryl groups, *Dalton Trans.*, 2022, **51**, 9843-9856.