Synthesis of Cesium lead bromide nanoparticles by ultrasonic bath: A polar-solvent-free approach at room temperature

Govind B. Nair^{1*}, R. Krishnan², Arno Janse van Vuuren³, H. C. Swart^{1#}

¹Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa.

²Extreme Light Infrastructure-Nuclear Physics (ELI-NP), 'Horia Hulubei' National R&D Institute for Physics and Nuclear Engineering (IFIN-HH), 077125 Măgurele, Ilfov, Romania ³Centre for HRTEM, Nelson Mandela University, Port Elizabeth, 6001, South Africa *Corresponding author Email : : govind1291@yahoo.com ; Nair.GB@ufs.ac.za #Corresponding author Email : : swarthc@ufs.ac.za

Supplementary Information File

Fig. S1 Williamson-Hall (W-H) plot of CPB8 NPs.

Fig. S2 Narrow scan XPS spectra of (a, b) Cs 3d, (c, d) C 1s regions in the CPB8 and CPB12 NPs, respectively.

Fig. S3 PL excitation spectra of the cesium lead bromide NPs prepared under different durations of ultrasonication.

Fig. S4 Variation of integrated PL intensity of CPB NPs versus the sonication time.

Fig. S5 PL emission spectra of the cesium lead bromide NPs excited at 365 nm.

Fig. S6 PL emission spectra of the cesium lead bromide NPs excited at 400 nm.

Fig. S7 PL decay curves for (a) CPB2, (b) CPB4, (c) CPB6, (d) CPB8, (e) CPB10 and (f) CPB12 NPs excited at 360 nm and monitored for their blue emission peak.

Table S1 Best fit parameters of PL decay curves for the green emission bands of (a) CPB2
(b) CPB4, (c) CPB6, (d) CPB8, (e) CPB10 and (f) CPB12 NPs.

Sr. No.	Decay time Parameters	Decay time Values (ns)	Coefficients	Coefficient values	Relative %	Average lifetime (ns)	Goodness of Fitting
(a)	CPB2	I		1			
	τ_1	5.86	A ₁	36388.56	42.53		
	$ au_2$	32.06	A_2	3006.63	19.23	4.119	1.179
	τ_3	181.42	A ₃	585.94	21.17		
	τ_4	972.91	A ₄	88.00	17.08		

(b)	CPB4						
	τ_1	6.36	A_1	36632.21	38.51	4.470	1.239
	τ_2	28.82	A ₂	5679.32	27.05		
	τ_3	151.56	A ₃	800.54	20.05		
	$ au_4$	887.98	A ₄	98.14	14.40		
(c)	CPB6						
	τ_1	7.60	A_1	39415.16	38.35		
	$ au_2$	36.69	A_2	5398.37	25.37	5.760	1.006
	$ au_3$	212.03	A_3	722.14	19.61		
	$ au_4$	1116.43	A_4	116.64	16.68		
(d)	CPB8				·		
	$ au_1$	8.88	A_1	32877.30	22.44		1.130
	$ au_2$	43.67	A_2	7835.22	26.31	20 742	
	$ au_3$	219.41	A_3	1528.69	25.79	20.743	
	$ au_4$	1143.84	A_4	289.61	25.47		
(e)	CPB10						
	$ au_1$	6.11	A_1	39409.06	59.86	0.967	0.951
	$ au_2$	26.28	A_2	3422.65	22.36		
	$ au_3$	134.19	A_3	350.86	11.71		
	τ_4	591.61	A_4	41.28	6.07		
(f)	CPB12						
	τ_1	6.11	A_1	41522.04	72.53		
	τ_2	32.96	A ₂	2043.72	19.98	0.667	0.930
	τ_3	249.29	A ₃	63.38	4.73		
	$ au_4$	711.25	A ₄	85.36	2.76		

Table S2 Best fit parameters of PL decay curves for the blue emission bands (a) CPB2, (b)CPB4, (c) CPB6, (d) CPB8, (e) CPB10 and (f) CPB12 NPs.

Sr. No.	Decay time Parameters	Decay time Values (ns)	Coefficients	Coefficient values	Relative %	Average lifetime (ns)	Goodness of Fitting
(a)	CPB2						
	$ au_1$	1.06	A_1	61815.91	84.67		
	$ au_2$	5.16	A_2	2176.29	14.55	0.303	0.917
	τ_3	35.76	A_3	16.92	0.78		
(b)	CPB4						
	τ_1	2.77	A_1	45576.74	64.63		
	$ au_2$	6.13	A_2	10458.14	32.78	0.642	0.904
	$ au_3$	37.48	A_3	135.22	2.59		
(c)	CPB6						
	τ_1	2.66	A_1	45202.47	63.05		
	$ au_2$	5.63	A_2	11796.09	34.87	0.507	0.920
	τ_3	32.37	A ₃	122.38	2.08		

(d)	CPB8						
	$ au_1$	3.21	A_1	45623.24	64.28		
	$ au_2$	6.07	A ₂	12718.63	33.90	0.490	1.102
	$ au_3$	1.38	A ₃	134.00	1.82		
(e)	CPB10						
	τ_1	2.79	A_1	40602.65	47.53		
	$ au_2$	9.77	A ₂	10549.66	43.32	0.834	0.586
	τ_3	46.15	A ₃	427.07	9.15		
(f)	CPB12						
	$ au_1$	3.08	A_1	45309.37	67.74		
	$ au_2$	7.12	A_2	8754.90	30.24	1.489	1.126
	$ au_3$	60.31	A ₃	69.19	2.02		