Zinc-motivated Fe/Fe₅C₂/Fe_{1-x}S@ Fe-N-C active sites grown on N-

doped porous carbon toward efficient oxygen reduction reaction in

zinc-air batteries

Qilong Ye^a, Mengwei Li^a, Sanying Hou^b, Yijie Deng^{a,*}, Junming Luo^{c,*} and Xinlong Tian^c 1

^aSchool of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China

^bChemistry and Chemical Engineering, University of South China, Hengyang 421001, China ^cState Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China

¹ Corresponding authors, E-mail addresses: dengyijie19891009@163.com; tianxl@hainanu.edu.cn; luojunming@hainanu. edu.cn

Fig. S1 Specific surface area of the prepared catalysts.

Fig. S2 Tafel slopes of Fe-N-C, FeZn-N-C-0.5, FeZn-N-C-1, FeZn-N-C-2 and Pt/C in O_2 -saturated 0.1 M KOH.

Fig. S3 (a) TEM image of FeZn-N-C-1 after more than 40000 s stability test. (b) SEM image of FeZn-N-C-1 (c) SEM image of FeZn-N-C-1 after more than 40000 s stability test.

Fig. S4 SEM elemental mapping image of FeZn-N-C-1.

Fig. S5 SEM elemental mapping image of FeZn-N-C-1 after more than 40000 s stability test.

Fig. S6 CV curves for (a) Fe-N-C, (b) FeZn-N-C-0.5, (c) FeZn-N-C-1 and (d) FeZn-N-C-2 at different scan rates. (Scanning rate: 5 mV/s, 10 mV/s, 20 mV/s, 30 mV/s, 40 mV/s).

Fig. S7 The electrochemical impedance spectra results of Fe-N-C and FeZn-N-C-1 in O_2 -saturated 0.1 M KOH.

Materials	$E_{1/2}$ (V) (vs. RHE) in 0.1 M KOH	References
FeZn-N-C-1	0.846	This work
Fe SA-NSC-900	0.860	[1]
Fe ₂ N@NCNTs	0.860	[2]
Fe-Co/Co ₃ O ₄ @NC-900	0.840	[3]
Se/Fe-Co ₃ O ₄ /N-CNs	0.800	[4]
Fe/Fe ₃ C/FeN _{0.0324} @N-GC-850	0.870	[5]
Fe/Fe ₃ C@N-doped CNTs	0.863	[6]
FeNC-950	0.840	[7]
FeSb/NC	0.830	[8]
Fe-N-C/MUS	0.860	[9]
FeNFC800	0.829	[10]
FeNC-24	0.852	[11]
FeCo/FeCoP@NMn-CNS-800	0.840	[12]
A-FeNC	0.850	[13]

Table. S1 A comparative table of the present work and the recently reportedORR performance of Fe-N-C catalysts in alkaline media.

Materials	Peak power density (mW cm ⁻²)	Specific capacity (mAh g ⁻¹)	References
FeZn-N-C-1	143.6	804	This work
Fe ₂ N@NCNTs	135	762	[2]
Fe-Co/Co ₃ O ₄ @NC-900	107.6		[3]
Se/Fe-Co ₃ O ₄ /N-CNs	141.3	765.6	[4]
Fe/Fe ₃ C@N-doped CNTs	206	781	[6]
FeSb/NC	175	751	[8]
FeCo/FeCoP@NMn-CNS-800	135	_	[12]
A-FeNC	102.2	_	[13]
Fe-N-HPC	164.8	735	[14]
Fe/Fe ₃ C@Fe-N _x -C	147	_	[15]
Cu/Fe/NeCNS	76.4	_	[16]
CoFeNi@CNT	152.3	814	[17]
SA-Fe-NC	164	806	[18]

Table. S2 Summary of liquid and all-solid nitrogen-air cell performance usingFe-N-C cathode catalysts.

References

 M. Wang, W. Yang, X. Li, Y. Xu, L. Zheng, C. Su, B. Liu, Atomically Dispersed Fe–Heteroatom (N, S) Bridge Sites Anchored on Carbon Nanosheets for Promoting Oxygen Reduction Reaction, ACS Energy Letters, 6 (2021) 379-386.

[2] X. He, Y. Zhang, J. Wang, J. Li, L. Yu, F. Zhou, J. Li, X. Shen, X. Wang, S. Wang, H. Jin, Biomass-Derived Fe₂N@NCNTs from Bioaccumulation as an Efficient Electrocatalyst for Oxygen Reduction and Zn–Air Battery, ACS Sustainable Chemistry & Engineering, 10 (2022) 9105-9112.

[3] Q.-H. Kong, X.-W. Lv, C.-C. Weng, J.-T. Ren, W.-W. Tian, Z.-Y. Yuan, Curving Engineering of Hollow Concave-Shaped Rhombic Dodecahedrons of N-Doped Carbon Encapsulated with Fe-Doped Co/Co₃O₄ Nanoparticles for an Efficient Oxygen Reduction Reaction and Zn–Air Batteries, ACS Sustainable Chemistry & Engineering, 10 (2022) 11441-11450.

[4] H. Zhao, H. Yao, S. Wang, Y. Cao, Z. Lu, J. Xie, J. Hu, A. Hao, Dopingengineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co₃O₄/N-doped carbon nanosheets as highly efficient rechargeable zinc-air batteries, Journal of Colloid and Interface Science, 626 (2022) 475-485.

[5] G. Li, K. Sheng, Y. Lei, J. Yang, Y. Chen, X. Guo, G. Chen, B. Chang, T. Wu, X. Wang, Facile synthesis of Fe₃C-dominated Fe/Fe₃C/FeN_{0.0324} multiphase nanocrystals embedded in nitrogen-modified graphitized carbon as efficient pH-universal catalyst for oxygen reduction reaction and zinc-air battery, Chemical Engineering Journal, 451 (2023) 138823.

[6] W.W. Xie, T.Z. Tian, M. Yang, N.W. Li, L. Yu, Formation of hollow frameworks of dual-sided Fe/Fe₃C@N-doped carbon nanotubes as bifunctional oxygen electrocatalyst for Zn-air batteries, Applied Catalysis B: Environmental, 317 (2022) 121760.

[7] Y. Ma, S. Luo, M. Tian, J.E. Lu, Y. Peng, C. Desmond, Q. Liu, Q. Li, Y. Min, Q. Xu, S. Chen, Hollow carbon spheres codoped with nitrogen and iron as effective electrocatalysts for oxygen reduction reaction, Journal of Power Sources, 450 (2020)

227659.

[8] X. Xie, P. Sun, W. Liu, T. Gong, X. Lv, L. Fang, Y. Wei, X. Sun, Novel Fe_{2.55}Sb₂ alloy nanoparticles incorporated in N-doped carbon as a bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries, New Journal of Chemistry, 46 (2022) 13504-13512.

[9] C. Maouche, Y. Wang, C. Cheng, W. Wang, Y. Li, W.A. Qureshi, P. Huang, A. Amjad, Y. Zhou, J. Yang, Sulfur doped FeNC catalysts derived from Dual-Ligand zeolitic imidazolate framework for the oxygen reduction reaction, Journal of Colloid and Interface Science, 623 (2022) 146-154.

[10] A. Yu, W. Long, L. Zhu, Y. Zhao, P. Peng, F.-F. Li, Transformation of postsynthesized F-MOF to Fe/N/F-tridoped carbon nanotubes as oxygen reduction catalysts for high power density Zn-air batteries, Chinese Chemical Letters, (2022) 107860.

[11] T. Wang, C. Sun, Y. Yan, F. Li, Understanding the active sites of Fe–N–C materials and their properties in the ORR catalysis system, RSC Advances, 12 (2022) 9543-9549.

[12] Y.-P. Chen, S.-Y. Lin, R.-M. Sun, A.-J. Wang, L. Zhang, X. Ma, J.-J. Feng, FeCo/FeCoP encapsulated in N, Mn-codoped three-dimensional fluffy porous carbon nanostructures as highly efficient bifunctional electrocatalyst with multi-components synergistic catalysis for ultra-stable rechargeable Zn-air batteries, Journal of Colloid and Interface Science, 605 (2022) 451-462.

[13] M. Lv, H. Guo, H. Shen, J. Wang, J. Wang, Y. Shimakawa, M. Yang, Fe₃C cluster-promoted single-atom Fe, N doped carbon for oxygen-reduction reaction, Physical Chemistry Chemical Physics, 22 (2020) 7218-7223.

[14] D. Wang, H. Xu, P. Yang, L. Xiao, L. Du, X. Lu, R. Li, J. Zhang, M. An, A dualtemplate strategy to engineer hierarchically porous Fe–N–C electrocatalysts for the high-performance cathodes of Zn–air batteries, Journal of Materials Chemistry A, 9 (2021) 9761-9770.

[15] L. Zong, X. Chen, S. Liu, K. Fan, S. Dou, J. Xu, X. Zhao, W. Zhang, Y. Zhang,W. Wu, F. Lu, L. Cui, X. Jia, Q. Zhang, Y. Yang, J. Zhao, X. Li, Y. Deng, Y. Chen,

L. Wang, Ultrafine Fe/Fe₃C decorated on Fe-Nx-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries, Journal of Energy Chemistry, 56 (2021) 72-79.

[16] M. Wang, P. Gao, D. Li, X. Wu, M. Yang, Z. Li, Y. Shen, X. Hu, Y. Liu, Z. Chen, Cu/Fe dual atoms catalysts derived from Cu-MOF for Zn-air batteries, Materials Today Energy, 28 (2022) 101086.

[17] D. Chen, G. Li, X. Chen, Q. Zhang, J. Sui, C. Li, Y. Zhang, J. Hu, J. Yu, L. Yu, L. Dong, Developing nitrogen and Co/Fe/Ni multi-doped carbon nanotubes as highperformance bifunctional catalyst for rechargeable zinc-air battery, Journal of Colloid and Interface Science, 593 (2021) 204-213.

[18] X. Liang, Z. Li, H. Xiao, T. Zhang, P. Xu, H. Zhang, Q. Gao, L. Zheng, Two Types of Single-Atom FeN₄ and FeN₅ Electrocatalytic Active Centers on N-Doped Carbon Driving High Performance of the SA-Fe-NC Oxygen Reduction Reaction Catalyst, Chemistry of Materials, 33 (2021) 5542-5554.