Electronic Supplementary Information (ESI)

Neutral Mononuclear Rhenium(I) Complex with Rare *in-situ* Generated Triazolyl Ligand for Luminescence "Turn-On" Detection of Histidine

(On the occasion of the 85th birthday anniversary of Retired Senior Professor Chockalingam Srinivasan)

Pounraj Thanasekaran,^{a,b} Jui-Hsiang Huang,^{c,d} Cing-Rou Jhou,^a Hsiang-Chun Tsao,^a Shruti Mendiratta,^d Cing-Huei Su,^a Ching-Ping Liu,^{*a} Yen-Hsiang Liu,^{*a} Jui-Hsien Huang^{*c} and Kuang-Lieh Lu^{*a,d}

^aDepartment of Chemistry, Fu Jen Catholic University New Taipei City 242, Taiwan E-mail: 129723@mail.fju.edu.tw (C.-P. Liu) 056461@gapp.fju.edu.tw (Y.-H. Liu) kllu@gate.sinica.edu.tw (K.-L. Lu)

E-mail: juihuang@cc.ncue.edu.tw (J.-H. Huang)

^d Institute of Chemistry, Academia Sinica Taipei 115, Taiwan

^b Department of Chemistry, Pondicherry University, Puducherry 605 014, India

^c Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan

Fig. S1. FTIR spectrum of compound 1.

Fig. S2. ¹H NMR spectrum of compound 1.

Fig. S3. ¹³C NMR spectrum of compound **1**.

Fig. S4. $[^{1}H-^{13}C]$ -HSQC 2D NMR spectrum of compound **1**.

Fig. S5. FAB-Mass spectrum of compound 1.

Scheme S1. Proposed reaction pathway for the formation of compound 1, where the 3,5-bis(2-pyridyl)-1,2,4-triazolate (bpt) ligand was *in situ* generated from the reaction of 2-cyanopyridine (2-CNP) and hydrazine.^[1] The NH₃ produced in the reaction as a byproduct is trapped in the metal center. H₄bpa = N,N'-bis(picolinamide)azine.

Reference (for Scheme S1)

^[1] L. Cheng, W.-X. Zhang, B.-H. Ye, J.-B. Lin, X.-M. Chen, *Inorg. Chem.* 2007, 46, 1135-1143.

Fig. S6. Excitation and emission spectra of the compound 1 in DMF.

Fig. S7. The excitation and emission spectra of compound **1** in Tris–HCl buffer solution.

Fig. S8. The change in relative emission intensity (at 536 nm) of compound 1 in the presence of various metal ions with equivalent concentration (250 μ M).

T (K)	Linear equation ^a	$K_{SV}(\mu M^{-1})$
293.15	$(F_0/F) = 0.0372 \times [Ni^{2+}] + 1$	0.0372
303.15	$(F_0/F) = 0.0285 \times [Ni^{2+}] + 1$	0.0285
313.15	$(F_0/F) = 0.0223 \times [Ni^{2+}] + 1$	0.0223
$a[Ni^{2+}]$ in μM .		

Table S1. K_{SV} values at different temperatures.

7

Fig. S9. Time-resolved luminescence decay (a) and the corresponding profiles with the logarithmic scale (b) of compound **1** in the absence and presence of Ni^{2+} .

Fig. S10. The UV-vis absorption spectra of compound 1 in the absence and presence of Ni^{2+} .

Fig. S11. The emission spectra of compound **1**. Compound **1** mixed with Cu^{2+} followed by the addition of either histidine or cysteine, respectively.

Table S1. Comparison of methods using other compounds or nanomaterials for the detection of histidine with that for compound **1**.

Compound or nanomaterials	Linear range	LOD	Reference*
	(µM)	(µM)	
DNA-scaffolded Ag nanoclusters	0–100	1.4	12b
ds-DNA-templated Cu nanoclusters	0.2–100	0.02	12c
IF@SiQDs	2800-5000	2200	12d
BSA-AuNCs	0.1–26	0.03	12e
ZnS QDs	1.25–30	0.74	12f
CdTe QDs	1–30	0.3	12g
Dumbbell DNA-templated Cu nanoclusters	0.05–40	0.0016	12h
SSA/AMP-Tb	0.2–150	0.07	12i
Ru-PDA	18–143	1.4	12j
Re complex	200-2000	1.2	This work

*As referred in main text.

Fig. S12. (a) Thermogravimetric plot and (b) powder X-ray diffraction patterns of compound **1**.

Cyrstallographic information

Identification code	1		
Empirical formula	$C_{15}H_{11}N_6O_3Re$		
Formula weight	509.50		
Temperature	200(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pbca		
Unit cell dimensions	a = 6.07770(10) Å	$\alpha = 90^{\circ}$	
	b = 22.5621(5) Å	$\beta=90^{\circ}$	
	c = 22.9459(6) Å	$\gamma=90^\circ$	
Volume	3146.47(12) Å ³		
Ζ	8		
Density (calculated)	2.151 Mg/m ³		
Absorption coefficient	7.753 mm ⁻¹		
<i>F</i> (000)	1936		
Crystal size	0.34 x 0.20 x 0.06 mm ³		
Theta range for data collection	2.53 to 25.13°		
Index ranges	-7<=h<=7, -26<=k<=26, -27<	<=l<=25	
Reflections collected	13787		
Independent reflections	2779 [R(int) = 0.0316]		
Completeness to theta = 25.13°	98.9 %		
Absorption correction	multi-scan		
Max. and min. transmission	0.6534 and 0.1780		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	2779 / 0 / 227		
Goodness-of-fit on F^2	1.071		
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0193, $wR2 = 0.0428$		
R indices (all data)	R1 = 0.0219, w $R2 = 0.0440$		
Largest diff. peak and hole	0.486 and -0.693 e.Å ⁻³		

 Table S2. Crystal data and structure refinement for compound 1.