Supporting Information

Self-standing 2D/2D Co₃O₄@FeOOH Nanosheet Arrays as Promising Catalyst for Oxygen Evolution Reaction

Xingyu Wang,^a Rui Xiang,^{*a} Su Li,^a Kejin Song,^a Wenzhang Huang^a College of Chemistry and Chemical Engineering, Chongqing University of Science &Technology, Chongqing, 401331, China. Email: 2019045@cqust.edu.cn

Figure S1. XRD pattern of Co(OH)₂ nanosheet arrays (black line), Co₃O₄ nanosheet arrays (blue line) and Co₃O₄@FeOOH nanosheet arrays (red line)

Figure S2. Raman spectra of Co_3O_4/NF (red line) and $Co_3O_4@FeOOH/NF$ (blue line)

Figure S3. EDX spectrum of $Co_3O_4@$ FeOOH nanosheets.

Figure S4. Survey XPS spectra of Co₃O₄@FeOOH/NF (red) and Co₃O₄/NF (black)

Figure S5. (a) polarization curves of Co_3O_4 @FeOOH/NF, Co_3O_4 /NF Co(OH)₂/NF and NF without iR compensation; (b) bar graph of overpotentials derived from polarization curves.

Figure S6. The equivalent circuit used for modeling the measured electrochemical response. R_{Ω} represents solution resistance; Q_{film} and R_{film} are represented as the dielectric property and resistance of catalyst film, respectively. Q_d is related to double layered capacitance and Q_{Φ} models the relaxation of the charge associated with the adsorbed intermediate. R_s and R_p are related with the kinetics of the interfacial charge transfer reaction. When resistance of oxide film is negligible compared with solution resistance, this equivalent circuit is equal to that of the conventional model of R(RQ). Note that, as the electrodes in our work featuring porous nature, constant phase element (CPE) was selected instead of capacitance element that was chosen in the literature reference.

Figure S7. Equivalent circuit simulation results of NF (a), $Co(OH)_2/NF$ (b), Co_3O_4/NF (c) and $Co_3O_4@FeOOH/NF$ (d).

Table S1. Optimum values of circuit elements for NF, Co(OH)₂/NF, Co₃O₄/NF and

Electrode name	Element value					
NF	$R_{\Omega}\!=\!0.829~\Omega$	R_{ct} =233.3 Ω				
Co(OH) ₂ /NF	$R_{\Omega} = 0.905$	R _{ct} =146.8				
Co ₃ O ₄ /NF	$R_{\Omega} = 1.27$	$R_{\rm film} = 0.31$	$R_{s} = 1.31$	$R_{s} = 76.59$		
Co ₃ O ₄ @FeOOH/NF	$R_{\Omega} = 1.32$	$R_{\rm film} = 0.73$	$R_{s} = 0.12$	$R_{s} = 18.76$		

Co₃O₄@FeOOH/NF by fitting the impedance data of Figure S11

Figure S12. polarization curves of Co_3O_4 @FeOOH/NF obtained under 5 mM (black line), 10 mM (red line) and 20 mM (blue line) (NH₄)₂Fe(SO₄)₂ solution.

Figure S13. polarization curves of Co_3O_4 @FeOOH/NF obtained with the reaction time of 15 min (black line), 30 min (red line) and 45 min (green line).

Table S1. Comparison of the OER performance of **Sample 1** with the recently reported cobalt based catalysts.

Electrocataylst	electrolyte	j	η	Tafel	Durability	Ref.
		mA	mV	slop	h	

		cm ⁻²		mV dec ⁻¹		
Co ₃ O ₄ @FeOOH/NF		10	209			
	1.0 M KOH	50	235	48.9	24	This work
		100	253			
				54	15	J. Am. Chem.
FeOOH(Se)/IF	1.0 M KOH	10	287			Soc. 2019, 141.
		100	364			7005-7013
S-FeOOH/CC	1.0 M KOH	10	244	59	100	Adv Funct
		50	287			Mater 2022
		100	308			32 2112674
		100	500			Appl Catal R:
	1.0 M KOH	10		65	50	Environmental
FeOOH/Ni ₃ N			244			
						209 (2020)
	1.0.1.0.00	10	2.50		20	Chem. Eng. J
CoP/FeOOH	1.0 M KOH	10	250	56.6		428 (2022)
						131130
					24	J Mater Chem
Fe ₃ O ₄ /Co ₃ S ₄	1.0 M KOH	10	270	56		A, 2017, 5(19):
						9210-6
NiCoP/C@FeOOH	1.0 M KOH	10 50	271 321	69	14	Nanoscale,
						2019, 11(42):
						19959-68.
γ-FeOOH/NF-6M	1.0 M KOH	10 100	286 316	51	24	Adv. Mater.
						2021, 33,
						2005587
CoSe ₂ @FeOOH	1.0 M KOH	10	253	69	20	Adv. Mater.
						Interfaces 2020,
NAs/CC						2001310
						Appl. Catal. B:
	1.0 M KOH	10		49	50	Environmental
Ni ₃ S ₂ @MoS ₂ /FeOOH			234			244 (2019)
						1004–1012
CoFeO@N/S-rGO	1.0 M KOH	10 100			100	J. Mater. Chem.
			248	40		A. 2018. 6.
			400			15728–15737
3-CoFeW	1.0 M KOH	10	192	36	30	I Am Chem
						Soc 2019 141
						1 232 230
CeO ₂ /Co ₃ O ₄	1.0 M KOH	10		68.1	20	1, 232-237
			265			
						2019, 9,
						6484-6490