Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Light-induced O₂-dependent aliphatic carbon-carbon (C-C) bond cleavage in bipyridine-ligated Co(II) chlorodiketonate complexes

Stephen N. Anderson[†], Josiah G. D. Elsberg[†], and Lisa M. Berreau^{*,†}

[†]Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States

Table of Contents	Page
Table S1. Summary of X-ray data collection and refinement	S3
Table S2. Selected bond distances (Å) for 8-10	S4
Table S3. Selected bond angles (deg) for 8-10	S4
Fig S1. FTIR spectrum of 8	S5
Fig S2. FTIR spectrum of 9	S6
Fig S3. FTIR spectrum of 10	S7
Fig S4. ESI-MS of 8	S8
Fig S5. ESI-MS of 9	S9
Fig S6. ESI-MS of 10	S10
Fig S7. ¹ H NMR of 8 in CD₃CN	S11
Fig S8. ¹ H NMR of 9 in CD ₃ CN	S12
Fig S9. ¹ H NMR of 10 in CD ₃ CN	S13
Fig S10.¹H NMR of 11 in CD₃CN	S14
Fig S11. UV-vis spectrum of 8 in CH ₃ CN under N_2	S15
Fig S12. UV-vis spectrum of ${f 9}$ in CH ₃ CN under N ₂	S16
Fig S13. UV-vis spectrum of 10 in CH ₃ CN under N_2	S17
Fig S14. ¹ H NMR of 8 + hv under N ₂ – organic recovery	S18
Fig S15. ¹ H NMR of 9 + hv under N ₂ – organic recovery	S19
Fig S16. ¹ H NMR of 10 + hv under N ₂ – organic recovery	S20
Fig S17. Absorption spectrum of $9 + hv + O_2$	S21
Fig S18. Absorption spectrum of $10 + hv + O_2$	S22
Fig S19. ¹ H NMR studies of the UV-light induced O_2 reactivity of 8 in CD ₃ CN	S23
Fig S20. ESI-MS of an acetonitrile solution of 8 after illumination	S24

Fig S21. ESI-MS of an acetonitrile solution of 9 after illumination	S25
Fig S22. ESI-MS of an acetonitrile solution of 10 after illumination	S26
Fig S23. ESI-MS of an acetonitrile solution of 8 illuminated at 350 nm	
under ¹⁸ O ₂	S27
Fig S24. ¹ H NMR of 12 in CD₃CN	S28
Fig S25. ESI-MS of 12	S29
Fig S26. ¹ H NMR of 12 + $hv + O_2$	S30
Fig S27. Absorption spectrum of $12 + hv + O_2$	S31
Fig S28. ¹ H NMR of 9 + hv + O_2 – organic recovery	S32
Fig S29. ¹ H NMR of 10 + hv + O_2 – organic recovery	S33
Fig S30. ¹ H NMR of 12 + hv + O_2 – organic recovery	S34
Fig S31. Representation of the cationic portion of 13	S35
Table S4. Selected bond distances (Å) for 13	S36
Table S5. Selected bond angles (deg) for 13	S36
Fig S32. ¹ H NMR of isolated organic products from the reaction of 13	
with trione and NaOCI with O_2 bubbling for 2 minutes	S37
Fig S33. Solution generated upon bubbling of O_2 through a CH ₃ CN	
solution of 13 for 8 h	S38
Fig S34. Absorption spectrum of a CH ₃ CN solution of 13 after	
bubbling with O ₂ for 8 h	S38
Fig S35. ¹ H NMR of 13 + 8 h O ₂	S39
Fig S36. ¹ H NMR of 13 + 8 h O_2 – diamagnetic region	S40
Fig S37. ¹ H NMR of isolated organic products from the reaction of 13	
with trione and NaOCI with O ₂ bubbling for 8 h	S41
Fig S38. ¹ H NMR spectra in CD ₃ CN of 13 + NaOCI + O_2 – organic recovery	S42
Fig S39. ¹ H NMR spectra in CD ₃ CN of 13 + NaOCI + O ₂	S43

	8 • O(CH ₂ CH ₃) ₂	9 • 0.5 CH ₃ CN • 0.5 O(CH ₂ CH ₃) ₂	10	12
Empirical formula	C ₃₉ H ₃₆ Cl ₂ CoN ₄ O ₇	$C_{40}H_{36.5}CI_2CoN_{4.5}O_{6.5}$	$C_{37}H_{30}Cl_2CoN_4O_8$	$C_{24}H_{22}CI_2C0N_6O_8$
Formula weight	802.55	814.06	788.48	652.30
Crystal system	Triclinic	Orthorhombic	Monoclinic	Triclinic
Space group	P-1	Pna2₁	P2₁/n	P-1
a (Å)	11.3963(6)	21.4753(12)	13.8215(7)	10.0272(8)
b (Å)	12.6001(7)	17.7824(9)	18.0740(10)	10.2270(6)
c (Å)	14.2773(7)	19.6340(12)	14.7453(7)	15.4354(6)
α (deg)	73.724(2)	90	90	83.304(4)
β (deg)	86.205(2)	90	110.426(2)	83.219(4)
γ (deg)	69.356(2)	90	90	61.217(7)
V (Å ³)	1840.40(17)	7497.9(7)	3451.9(3)	1372.19(17)
Z	2	8	4	2
ρ_{calc} (g/cm ³)	1.448	1.442	1.517	1.579
Temp (K)	100	100	100	100
Crystal size	0.28 × 0.226 ×	0.24 × 0.21 × 0.20	0.26 × 0.25 ×	0.24 × 0.19
(mm ⁻¹)	0.11		0.02	x0.12
Diffractometer	Bruker D8	Bruker D8	Bruker D8	Rigaku XtaLAB
	Venture	Venture	Venture	Mini II
				Diffractometer
Abs. coeff. (mm ⁻¹)	0.668	0.656	0.712	0.879
20 (deg)	54.298	55.162	55.1	60.234
Reflections collected	87249	96371	54870	25701
Indep. Reflections	8151	17244	7949	8973
<i>R</i> 1 / w <i>R</i> 2 ^b	0.0411 / 0.1019	0.0356 / 0.0837	0.0352 / 0.0736	0.0363 / 0.0885
GOF (<i>F</i> ²)	1.047	1.032	1.027	1.042
$\Delta \rho_{max} / \Delta \rho_{min}$ (e Å ⁻³)	1.0 / -0.7	0.61 / -0.26	0.58 / -0.41	0.47 / -0.49

Table S1. Summary of X-ray data collection and refinement.^a

^{*a*} Radiation used: MoKα ($\lambda = 0.71073$ Å). ^{*b*} R1 = $\sum ||F_0| - |F_c|| / \sum |F_0|$; wR2 = $[\sum [w(F_0^2 - F_c^2)^2] / [\sum (F_0^2)^2]]^{1/2}$ where $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$.

Table 52. Selected bond distances (A) for 8-10				
	8	9A	9B	10
Co(1)-O(1)	2.0596(14)	2.034(3)	2.024(3)	2.0577(13)
Co(1)-O(2)	2.0437(15)	2.030(2)	2.027(2)	2.0286(13)
Co(1)-N(1)	2.1333(17)	2.146(3)	2.134(3)	2.1544(16)
Co(1)-N(2)	2.1251(17)	2.152(3)	2.139(3)	2.1040(15)
Co(1)-N(3)	2.1136(17)	2.114(3)	2.110(3)	2.1307(16)
Co(1)-N(4)	2.1321(18)	2.109(3)	2.106(3)	2.1269(16)
O(1)-C(22)	1.267(2)	1.260(4)	1.280(4)	1.272(2)
O(2)-C(21)	1.265(3)	1.262(4)	1.262(4)	1.267(2)
C(21)-C(23)	1.404(3)	1.412(5)	1.420(5)	1.413(3)
C(22)-C(23)	1.414(3)	1.406(5)	1.411(5)	1.412(3)

Table S2. Selected bond distances (Å) for 8-10

Table S3. Selected bond angles (deg) for 8-10

	8	9A	9B	10
O(1)-Co(1)-N(1)	171.12(6)	168.96(10)	86.70(10)	162.39(6)
O(1)-Co(1)-N(2)	96.60(6)	92.73(11)	170.22(11)	93.02(6)
O(1)-Co(1)-N(3)	92.08(6)	97.44(11)	94.03(12)	91.67(6)
O(1)-Co(1)-N(4)	87.37(6)	89.61(11)	93.29(12)	94.73(5)
O(2)-Co(1)-O(1)	86.02(6)	86.70(10)	92.88(11)	85.80(5)
O(2)-Co(1)-N(1)	87.80(6)	89.36(10)	89.47(11)	81.29(6)
O(2)-Co(1)-N(2)	89.04(6)	87.42(11)	89.19(11)	97.13(6)
O(2)-Co(1)-N(3)	95.97(6)	93.09(11)	94.63(11)	90.26(6)
O(2)-Co(1)-N(4)	170.14(6)	168.98(11)	171.70(11)	167.23(6)
N(2)-Co(1)-N(1)	76.91(7)	76.79(12)	76.90(12)	76.85(6)
N(2)-Co(1)-N(4)	98.99(7)	103.14(12)	95.99(12)	95.58(6)
N(3)-Co(1)-N(1)	94.90(7)	93.06(12)	92.19(11)	100.28(6)
N(3)-Co(1)-N(2)	170.26(7)	169.83(13)	171.93(12)	171.51(6)
N(3)-Co(1)-N(4)	76.96(7)	77.09(12)	77.11(12)	76.98(6)
N(4)-Co(1)-N(1)	99.54(7)	96.06(11)	99.11(12)	100.51(6)
C(22)-O(1)-Co(1)	128.50(13)	127.9(2)	129.4(2)	128.22(12)
C(21)-O(2)Co(1)	127.21(14)	129.3(2)	130.7(2)	131.73(12)
O(1)-C(22)-C(23)	123.45(19)	124.5(3)	123.8(3)	124.29(17)
O(2)-C(21)-C(23)	124.3(2)	123.2(3)	122.9(3)	121.59(16)
O(1)-C(22)-C(25)	115.39(18)	114.3(3)	114.1(3)	115.70(15)
O(2)-C(21)-C(24)	114.95(19)	114.1(3)	114.6(3)	114.49(16)
C(21)-C(23)-C(22)	124.82(19)	124.7(3)	124.8(3)	125.15(17)
C(23)-C(21)-C(24)	120.75(19)	122.6(3)	122.5(3)	123.86(16)
C(23)-C(22)-C(25)	121.14(19)	121.1(3)	122.1(3)	119.96(16)

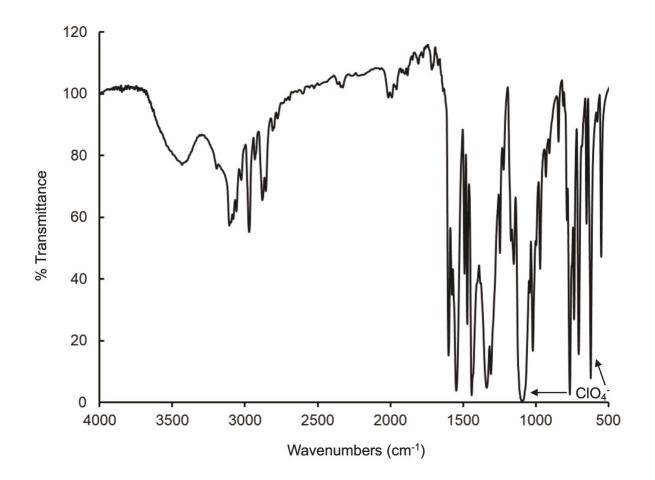


Fig S1. FTIR spectrum for 8 collected as a KBr pellet.

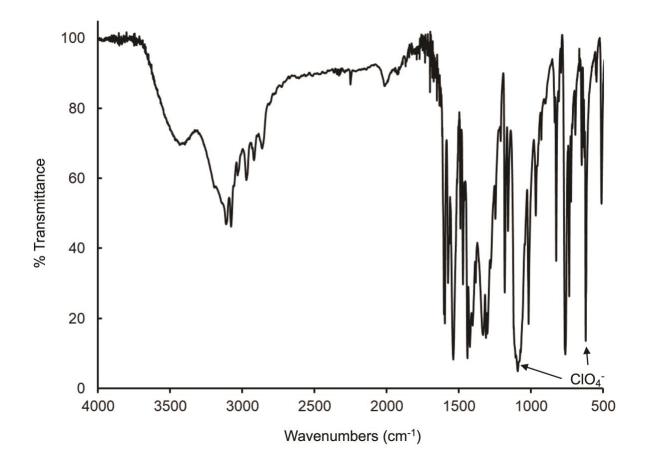


Fig S2. FTIR spectrum for 9 collected as a KBr pellet.

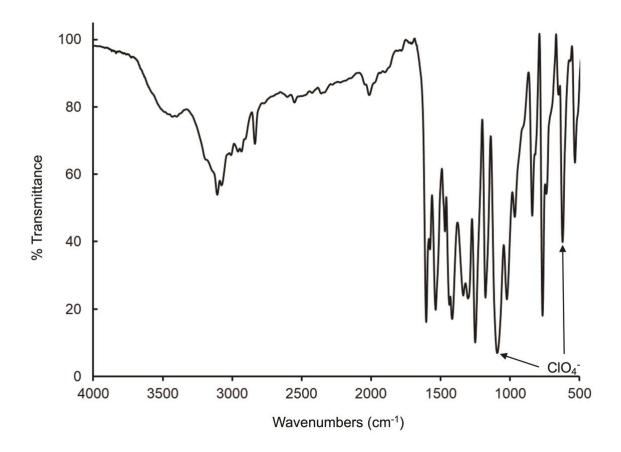


Fig S3. IR spectrum for 10 collected as a KBr pellet.

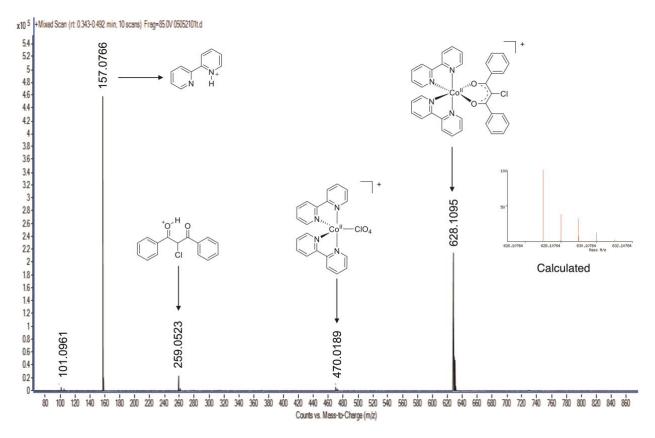


Fig S4. ESI-MS of 8 in CH₃CN.

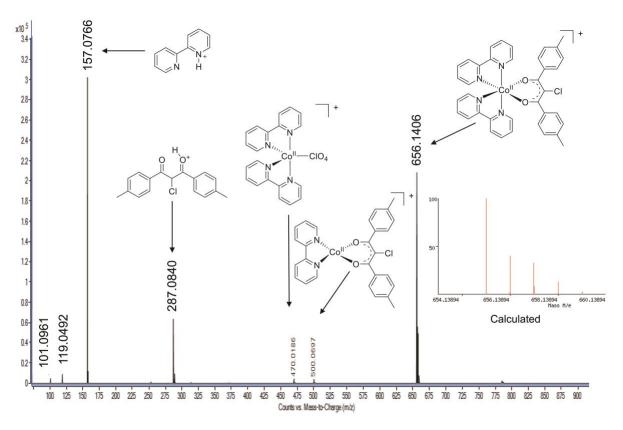
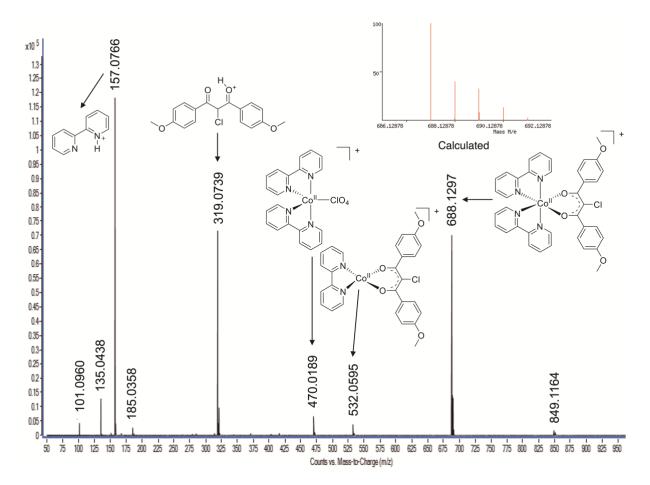
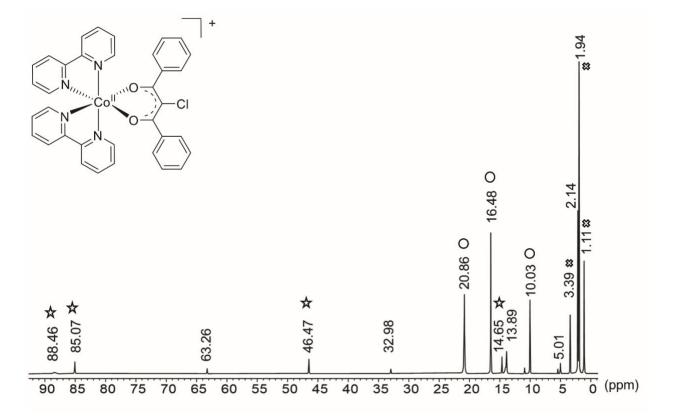
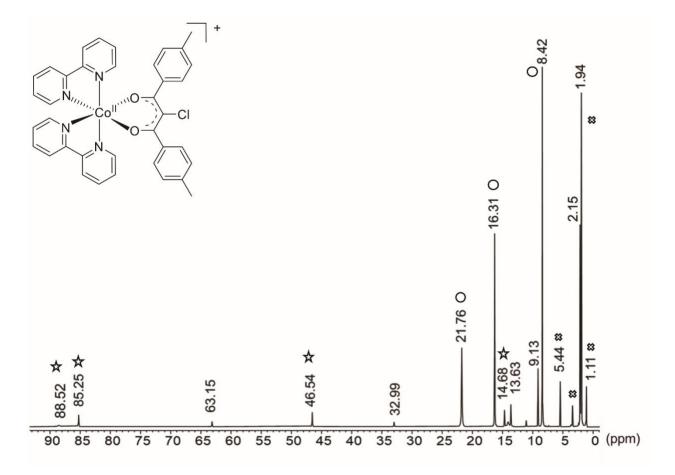
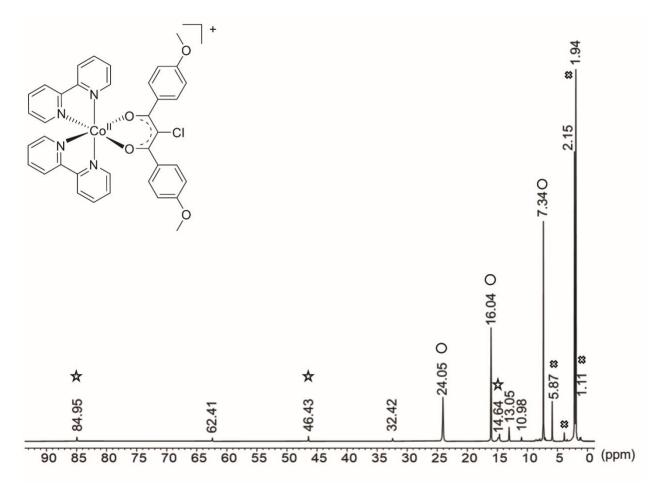
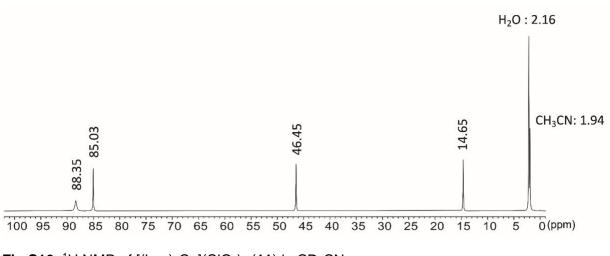
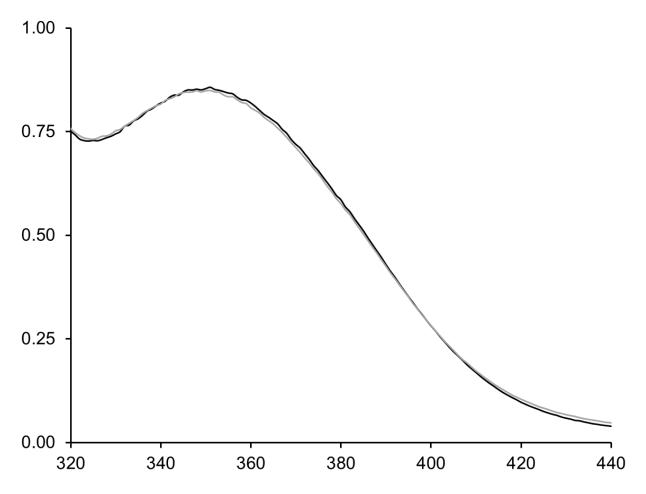


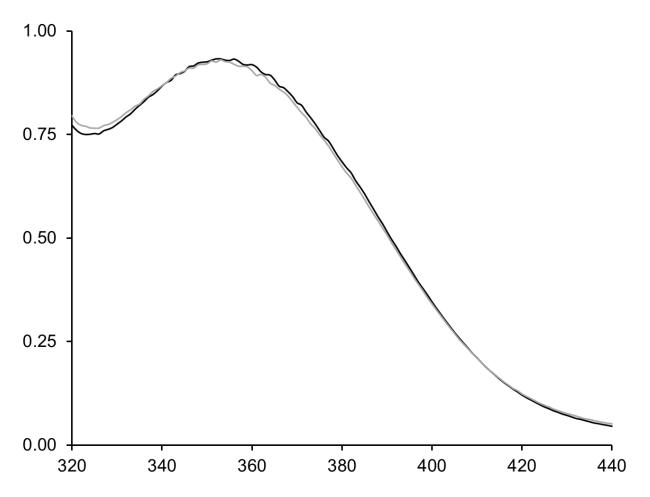
Fig S5. ESI-MS of 9 in CH₃CN.


Fig S6. ESI-MS of 10 in CH₃CN.


Fig S7. ¹H NMR of **8** in CD₃CN. The signals marked with an open circle correspond to the coordinated diketonate ligand in **8**. Signals marked with a star indicate those from $[(bpy)_3Co](CIO_4)_2$ (**11**). Residual solvent signals are indicated with (X).


Fig S8. ¹H NMR of **9** in CD₃CN. The signals marked with an open circle correspond to the coordinated diketonate ligand in **9**. Signals marked with a star indicate those from [(bpy)₃Co](ClO₄)₂ (**11**). Residual solvent signals are indicated with (X).


Fig S9. ¹H NMR of **10** in CD₃CN. The signals marked with an open circle correspond to the coordinated diketonate ligand in **10**. Signals marked with a star indicate those from [(bpy)₃Co](ClO₄)₂ (**11**). Residual solvent signals are indicated with (X).

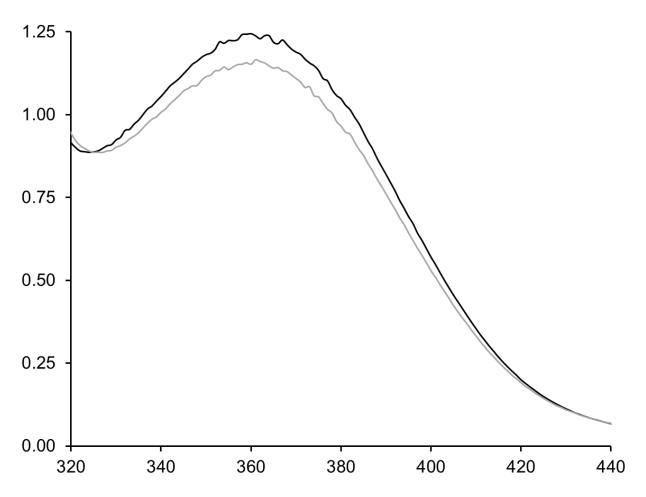

Fig S10. ¹H NMR of [(bpy)₃Co](ClO₄)₂ (**11**) in CD₃CN.

Fig S11. UV-Vis spectrum of **8** (black) in CH_3CN . The spectrum in gray is for the same solution after exposure to air in the dark for 20 hours.

Fig S12. UV-Vis spectrum of **9** (black) in CH_3CN . The spectrum in gray is for the same solution after exposure to air in the dark for 20 hours.

Fig S13. Absorption spectrum of **10** (black) in CH_3CN . The spectrum in gray is for the same solution after exposure to air in the dark for 20 hours.

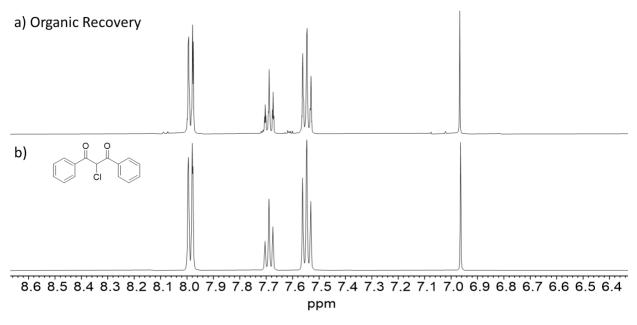
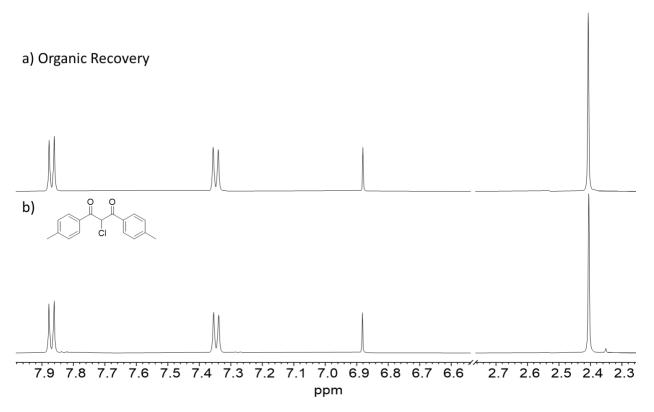
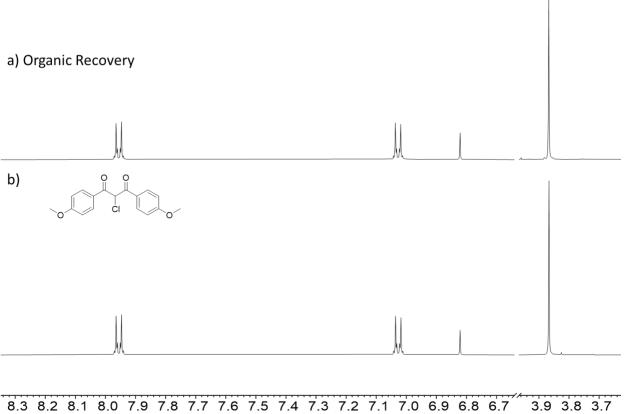




Fig S14. ¹H NMR spectra in CD₃CN from: a) The isolated organic products from illumination of 8 at 350 nm for 20 hours under N_2 . b) 2-chloro-1,3-diphenyl-1,3-propandione.

Fig S15. ¹H NMR spectra in CD₃CN from: a) The isolated organic products from illumination of **9** at 350 nm for 20 hours under N_2 . b) 2-chloro-1,3-bis(4-methylphenyl)-1,3-propanedione.

ppm

Fig S16. ¹H NMR spectra in CD₃CN from: a) The isolated organic products from illumination of **10** at 350 nm for 20 hours under N_2 . b) 2-chloro-1,3-bis(4-methoxyphenyl)-1,3-propandione.

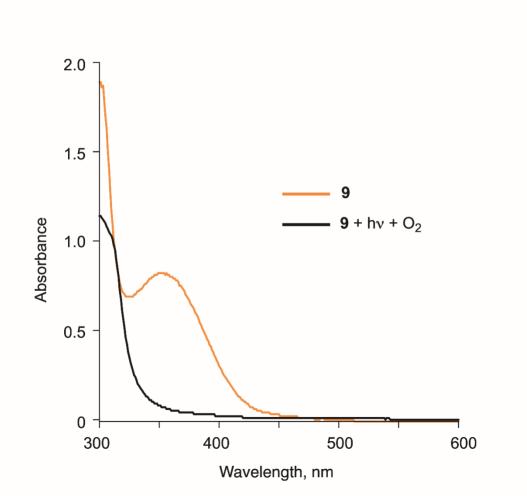


Fig S17. Absorption spectral changes upon illumination of 9 in O_2 -purged CH₃CN at 350 nm.

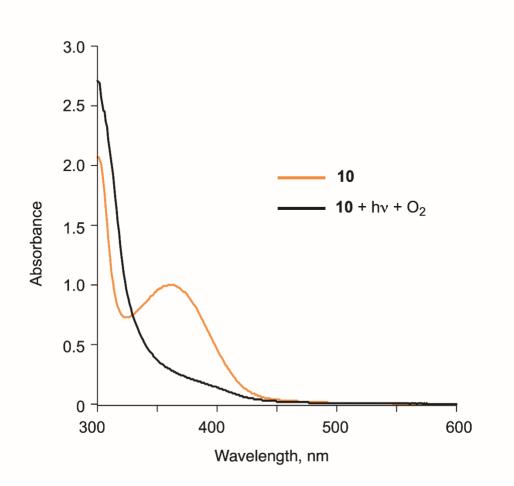
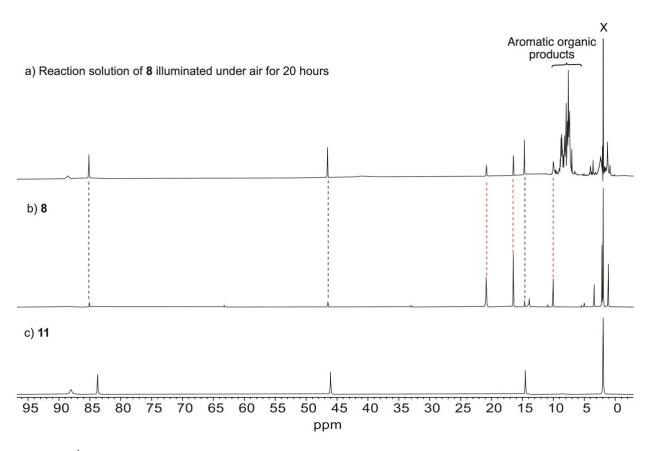



Fig S18. Absorption spectral changes upon illumination of 10 in O₂-purged CH₃CN at 350 nm.

Fig S19. ¹H NMR studies of the UV-light induced O₂ reactivity of **8** in CD₃CN (residual solvent signal designated by X). a) Product mixture for an O₂-purged CH₃CN solution of **8** after illumination with 350 nm lamps for 20 hours; b) ¹H NMR spectrum of **8**. The change in the relative intensity of the signals for **8** and [(bpy)₃Co](ClO₄)₂ (**11**), designated by red and blue dashed lines, respectively, and the appearance of signals for free aromatic organic products, provide evidence for the light-driven diketonate reactivity. c) ¹H NMR of [(bpy)₃Co](ClO₄)₂ (**11**) in CD₃CN. The slight shift in the signals of this compound at ~46 and ~84 ppm in the sample containing **8** (spectrum b)) is attributed to the presence paramagnetic character of the compounds.

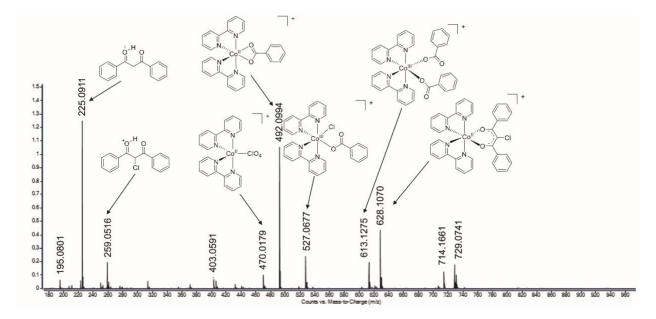


Fig S20. ESI-MS of an O₂-purged CH₃CN solution of 8 after illumination at 350 nm for 20 hours.

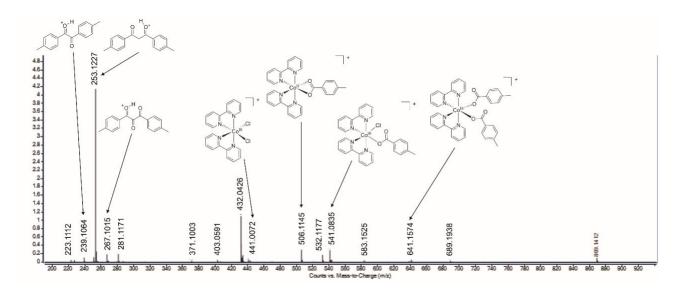


Fig S21. ESI-MS of an O_2 -purged CH₃CN solution of **9** after illumination at 350 nm for 20 hours.

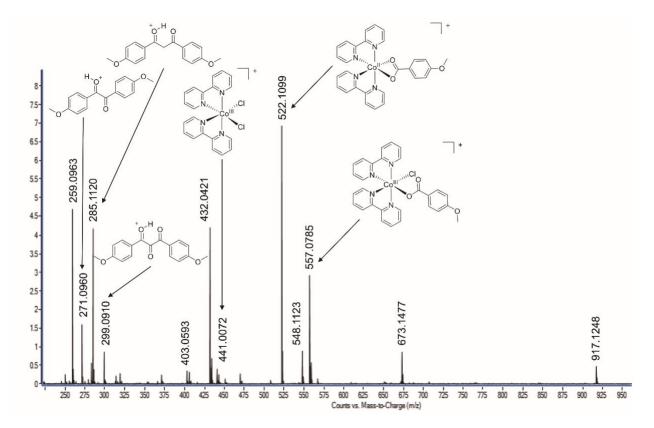
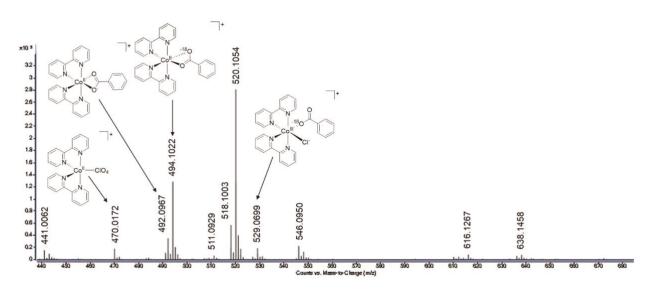
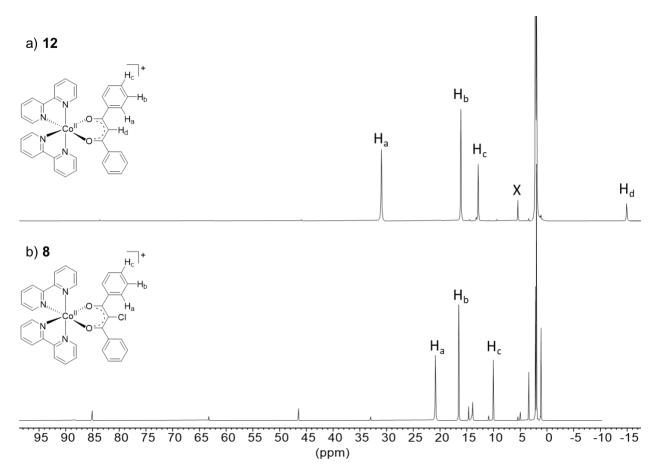




Fig S22. ESI-MS of an O_2 -purged CH_3CN solution of **10** after illumination at 350 nm for 20 hours.

Fig S23. ESI-MS of an CH₃CN solution of **8** illuminated at 350 nm under ¹⁸O₂ for 20 hours. ¹⁸O incorporation is indicated by comparison of the isotope patterns for $[(bpy)_2Co(^{18}OOCPh)]^+$ (*m/z* 494.1022) and $[(bpy)_2Co(O_2CPh)]^+$ (*m/z* 492.0967).

Fig S24. a) ¹H NMR of **12** in CD₃CN. A residual solvent signal (CH₂Cl₂) is indicated with (X) in the spectrum of **12**; b) ¹H NMR of **8** in CD₃CN.

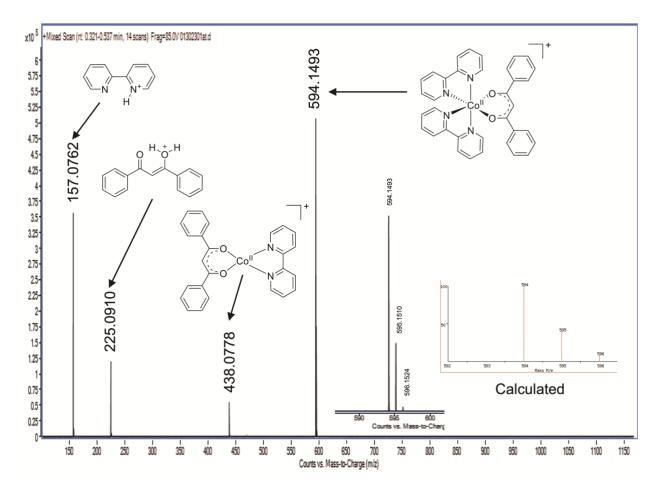


Fig S25. ESI-MS of 12 in CH₃CN.

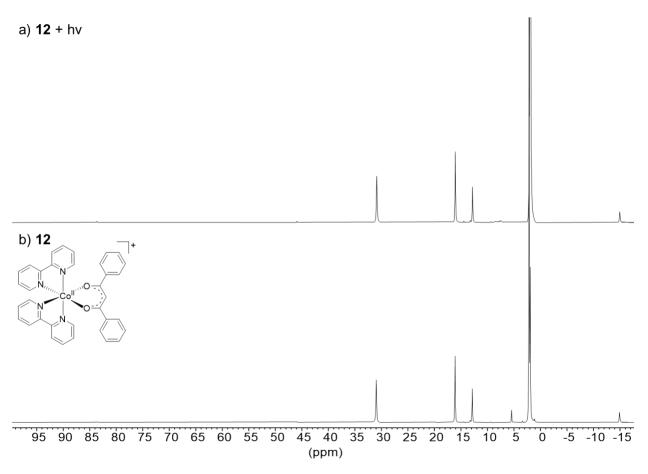
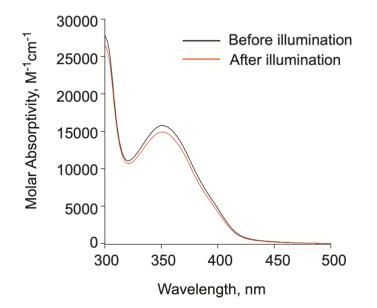
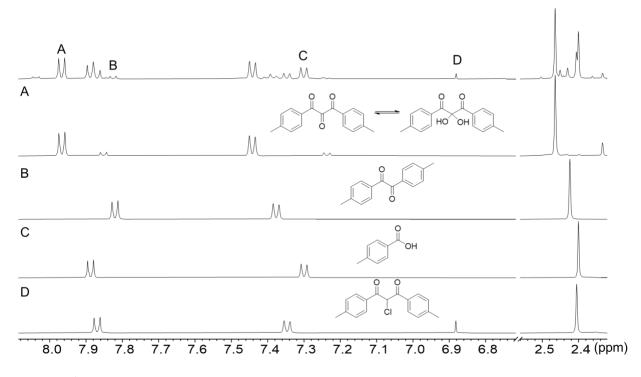
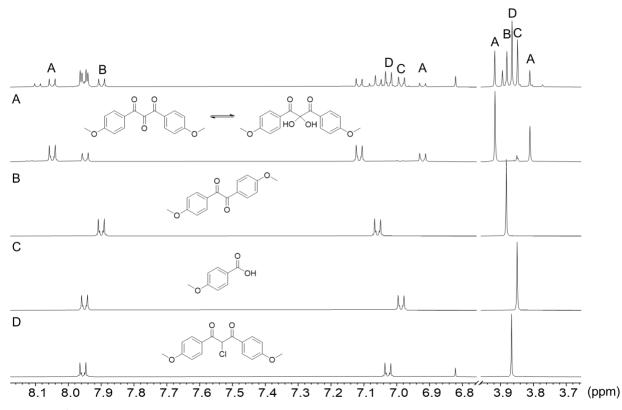


Fig S26. a) ¹H NMR of 12 after illumination at 350 nm in CD₃CN. b) 12 before illumination.

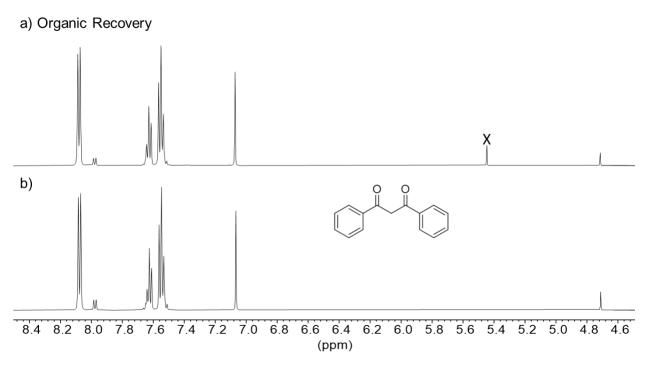
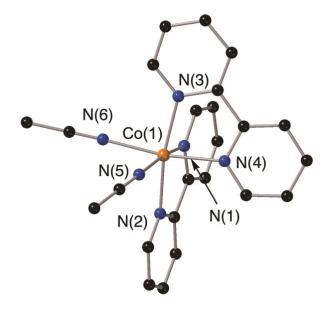
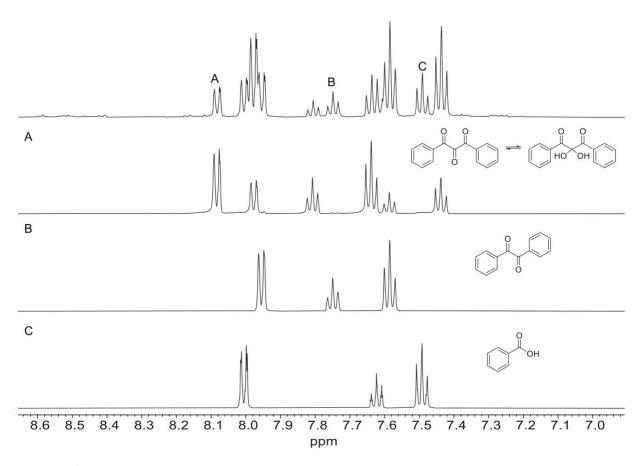

Fig S27. Absorption spectral features of 12 in acetonitrile before and after illumination of an O_2 purged solution at 350 nm.

Fig S28. ¹H NMR of isolated organic products from the illumination of **9** in O₂-purged CH₃CN with 350 nm for 20 hours (top) compared to the ¹H NMR of organic products (A-D). Resonances that can be used to identify a specific product are marked with A-D. Spectra collected in CD₃CN.

Fig S29. ¹H NMR of isolated organic products from the illumination of **10** in O₂-purged CH₃CN with 350 nm for 20 hours (top) compared to the ¹H NMR of organic products (A-D). Resonances that can be used to identify a specific product are marked with A-D. Spectra collected in CD₃CN.

Fig S30. ¹H NMR of a) isolated organic products from the illumination of **12** in O₂-purged with 350 nm for 20 hours and b) dibenzoylmethane dissolved in CD₃CN. A residual solvent signal (CH₂Cl₂) is indicated with (X) in the spectrum of the sample derived from **12**.




Fig S31. Representation of the cationic portion of 13.

	13	
Co(1)-N(1)	2.1245(14)	
Co(1)-N(2)	2.1228(14)	
Co(1)-N(3)	2.1198(15)	
Co(1)-N(4)	2.1246(14)	
Co(1)-N(5)	2.1358(15)	
Co(1)-N(6)	2.1356(16)	

Table S4. Selected bond distances (Å) for 13

 Table S5.
 Selected bond angles (deg) for 13

	13	
N(1)-Co(1)-N(2)	77.20(5)	
N(1)-Co(1)-N(3)	94.48(5)	
N(1)-Co(1)-N(4)	88.68(5)	
N(1)-Co(1)-N(5)	169.70(6)	
N(1)-Co(1)-N(6)	94.04(6)	
N(2)-Co(1)-N(3)	168.65(5)	
N(2)-Co(1)-N(4)	94.69(6)	
N(2)-Co(1)-N(5)	92.84(6)	
N(2)-Co(1)-N(6)	95.02(6)	
N(3)-Co(1)-N(4)	77.22(6)	
N(3)-Co(1)-N(5)	95.74(6)	
N(3)-Co(1)-N(6)	93.24(6)	
N(4)-Co(1)-N(5)	94.82(6)	
N(4)-Co(1)-N(6)	170.27(6)	

Fig S32. ¹H NMR of isolated organic products from the reaction of **13** with 1,3diphenylpropanetrione with NaOCI in CH₃CN. O₂ was bubbled into the solution of **13** for two minutes. The isolated products (top) are compared to the ¹H NMR of organic standards (A-C). Spectra collected in CD₃CN.

Fig S33. Dark red-brown solution generated upon bubbling of O_2 through a CH₃CN solution of 13 for 8 h.

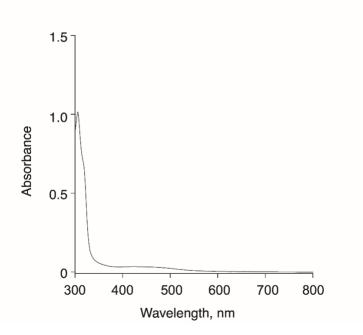
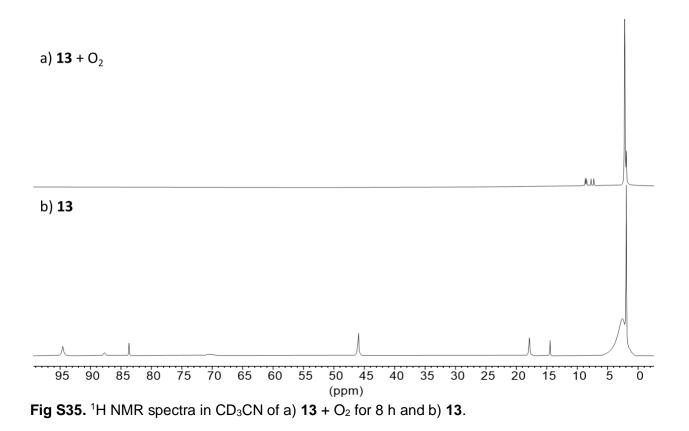
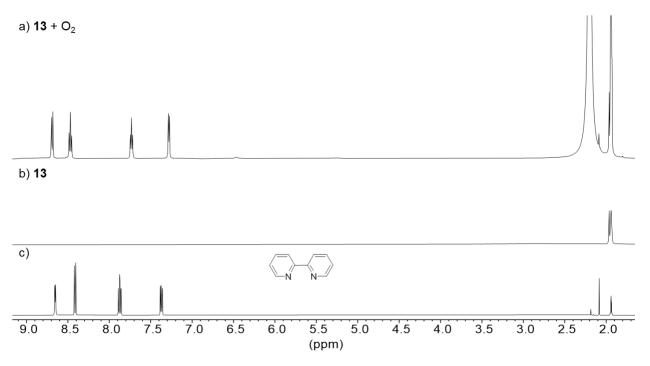
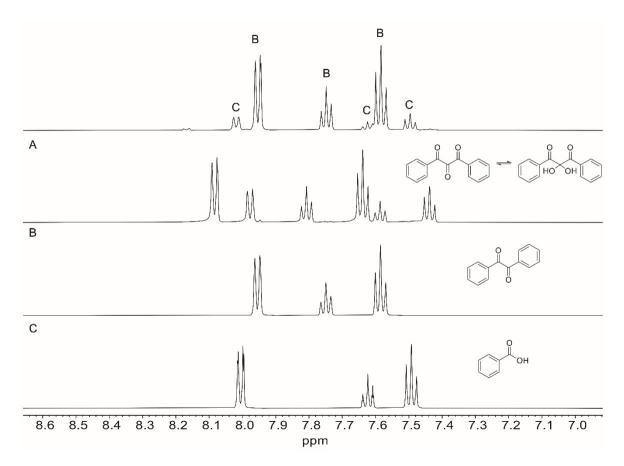



Fig S34. Absorption spectrum of 13 (2.94 \times 10⁻⁵ M) in CH₃CN after bubbling with O₂ for 8 h.

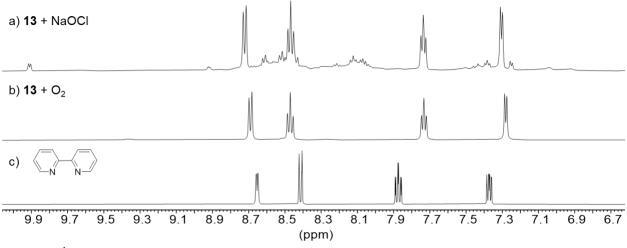


Fig S36. ¹H NMR spectra in CD₃CN of a) $13 + O_2$ for 8 h; b) 13 and c) 2,2'-bipyridine.

Fig S38. ¹H NMR features in the aromatic region of CD_3CN solutions of **13** upon treatment with stoichiometric NaOCI (a), or upon extended exposure to O_2 (b). Distinct chemical shifts from free bipyridine c) suggest the formation of bpy-ligated Co(III) species.

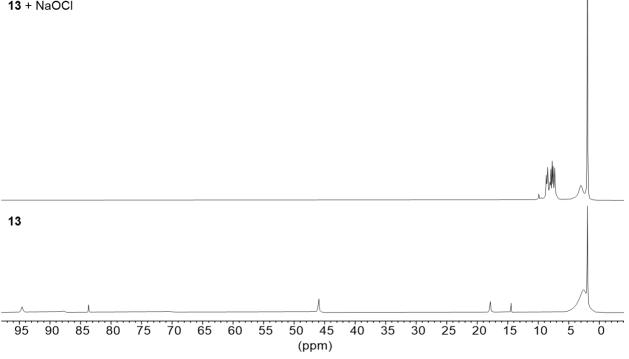


Fig S39. ¹H NMR spectra in CD_3CN of a) **13** + NaOCI and b) **13**.