Modulation of  $Bi^{3+}$  luminescence from broadband green to broadband deep red in  $Lu_2WO_6$  by  $Gd^{3+}$  doping and its applications in high color rendering index white LED and near-infrared LED

Xuejiao Wang,<sup>a,b\*</sup> Xiaowen Feng,<sup>a</sup> Maxim S. Molokeev,<sup>c,d,e</sup> Huiling Zheng,<sup>a</sup> Qiushi Wang,<sup>a</sup> Chunyan Xu,<sup>f</sup> Ji-Guang Li<sup>b\*</sup>

<sup>a</sup>College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning 121007, China

<sup>b</sup>Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan

<sup>c</sup>Laboratory of Crystal Physics, Kirensky Institute of Physics, FRC KSC SB RAS, Krasnoyarsk 660036, Russia

<sup>d</sup>Research and Development Department, Kemerovo State University, Kemerovo 650000, Russia <sup>e</sup>Siberian Federal University, Krasnoyarsk 660041, Russia

<sup>f</sup>Jilin Engineering Laboratory for Quantum Information Technology, Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, Changchun 130052, China

\*Corresponding author

Dr. Xuejiao Wang Bohai University Jianzhou, China Tel: +86-416-3400708 E-mail: <u>wangxuejiao@bhu.edu.cn</u>

Dr. Ji-Guang Li National Institute for Materials Science Ibaraki, Japan Tel: +81-29-860-4394 E-mail: <u>li.jiguang@nims.go.jp</u>



Fig. S1 Difference Rietveld plot for  $Lu_2WO_6$  (a) and  $(Lu_{0.99-x}Gd_xBi_{0.01})_2WO_6$ , where x = 0 (b), x = 0.02 (c), x = 0.05 (d), x = 0.10 (e), x = 0.25 (f), x = 0.75 (g) and x = 0.99 (h)

| x                                    | Space Group | Cell parameters (Å),<br>Cell volume (Å <sup>3</sup> ) | $\frac{R_{wp} (\%), R_{p} (\%), R_{B}}{(\%), \chi^{2}}$ |
|--------------------------------------|-------------|-------------------------------------------------------|---------------------------------------------------------|
|                                      |             | <i>a</i> = 7.52262(10),                               |                                                         |
|                                      |             | <i>b</i> = 5.26905(8),                                |                                                         |
| Pure Lu <sub>2</sub> WO <sub>6</sub> | P2/c        | <i>c</i> = 11.22463(16),                              | 5.61, 4.04, 1.1, 4.05                                   |
|                                      |             | $\beta = 104.6413(7),$                                |                                                         |
|                                      |             | V = 430.463(11)                                       |                                                         |
|                                      |             | <i>a</i> = 7.52432(8),                                |                                                         |
|                                      |             | <i>b</i> = 5.27010(6),                                |                                                         |
| <i>x</i> =0                          | P2/c        | <i>c</i> = 11.22511(12),                              | 5.36, 3.96, 0.97, 3.78                                  |
|                                      |             | $\beta = 104.6428(6),$                                |                                                         |
|                                      |             | V = 430.663(8)                                        |                                                         |
|                                      |             | <i>a</i> = 7.52747(14),                               |                                                         |
|                                      |             | <i>b</i> = 5.27346(11),                               |                                                         |
| <i>x</i> =0.02                       | P2/c        | c = 11.2307(2),                                       | 6.8, 5.19, 2.28, 2.4                                    |
|                                      |             | $\beta = 104.6381(11),$                               |                                                         |
|                                      |             | V = 431.341(14)                                       |                                                         |
|                                      |             | <i>a</i> = 7.53287(10),                               |                                                         |
|                                      |             | <i>b</i> = 5.27787(8),                                |                                                         |
| <i>x</i> =0.05                       | P2/c        | <i>c</i> = 11.24076(15),                              | 5.92, 4.51, 1.09, 4.17                                  |
|                                      |             | $\beta = 104.6241(8),$                                |                                                         |
|                                      |             | V = 432.426(10)                                       |                                                         |

**Table S1.** Main parameters of processing and refinement of the  $Lu_2WO_6$  and  $(Lu_{0.99}$ .  ${}_xGd_xBi_{0.01})_2WO_6$  samples.

$$a = 7.54138(16),$$
  

$$b = 5.28624(12),$$
  

$$x=0.10 P2/c c = 11.2588(3), 6.57, 4.61, 0.0, 2.18$$
  

$$\beta = 104.5927(13),$$
  

$$V = 434.359(17)$$
  

$$a = 7.56643(11),$$
  

$$b = 5.30847(9),$$
  

$$x=0.25 P2/c c = 11.30437(17), 4.78, 3.76, 0.0, 1.64$$
  

$$\beta = 104.5274(9),$$
  

$$V = 439.536(12)$$
  

$$a = 16.3383(4),$$
  

$$b = 11.1340(3),$$
  

$$x=0.75 C2/c c = 5.39850(14), 4.04, 3.21, 0.66, 1.5$$
  

$$\beta = 107.7554(11),$$
  

$$V = 935.26(4)$$
  

$$a = 16.39881(15),$$
  

$$b = 11.17398(10),$$
  

$$x=0.99 C2/c c = 5.43037(5), 3.12, 2.25, 0.81, 2.52$$
  

$$\beta = 107.6698(5),$$
  

$$V = 948.116(15)$$

**Table S2.** Fractional atomic coordinates (x, y, z), isotropic displacement parameter  $B_{iso}$  (Å<sup>2</sup>) and atomic occupancy *Occ*. of Lu<sub>2</sub>WO<sub>6</sub> and (Lu<sub>0.99-x</sub>Gd<sub>x</sub>Bi<sub>0.01</sub>)<sub>2</sub>WO<sub>6</sub>

| Atom                                 | x | У | Z | $B_{\rm iso}$ | Occ. |
|--------------------------------------|---|---|---|---------------|------|
| Pure Lu <sub>2</sub> WO <sub>6</sub> |   |   |   |               |      |
|                                      |   |   |   |               |      |

| Lu1 | 0         | 0.7372(5)    | 0.25        | 0.63(14) | 1       |
|-----|-----------|--------------|-------------|----------|---------|
| Lu2 | 0.5       | 0.6840(5)    | 0.25        | 0.55(14) | 1       |
| Lu3 | 0.2016(2) | 0.1874(4)    | 0.07864(15) | 0.58(14) | 1       |
| W1  | 0.2802(2) | 0.2549(4)    | 0.38720(14) | 0.80(14) | 1       |
| O1  | 0.356(3)  | 0.135(4)     | 0.5525(19)  | 1.1(2)   | 1       |
| 02  | 0.507(3)  | 0.374(3)     | 0.3862(17)  | 1.1(2)   | 1       |
| O3  | 0.151(3)  | 0.525(4)     | 0.442(2)    | 1.1(2)   | 1       |
| O4  | 0.276(3)  | -0.014(3)    | 0.2665(18)  | 1.1(2)   | 1       |
| 05  | 0.070(3)  | 0.034(4)     | 0.3981(17)  | 1.1(2)   | 1       |
| O6  | 0.197(3)  | 0.467(3)     | 0.2220(18)  | 1.1(2)   | 1       |
|     |           | <i>x</i> =   | 0           |          |         |
| Lu1 | 0         | 0.7378(5)    | 0.25        | 0.50(12) | 1       |
| Lu2 | 0.5       | 0.6841(5)    | 0.25        | 0.52(13) | 1       |
| Lu3 | 0.2016(2) | 0.1871(3)    | 0.07876(14) | 0.46(12) | 1       |
| W1  | 0.2799(2) | 0.2549(4)    | 0.38712(13) | 0.70(12) | 1       |
| O1  | 0.360(2)  | 0.134(3)     | 0.5535(19)  | 1.1(2)   | 1       |
| O2  | 0.513(2)  | 0.366(3)     | 0.3830(16)  | 1.1(2)   | 1       |
| O3  | 0.156(3)  | 0.525(4)     | 0.438(2)    | 1.1(2)   | 1       |
| O4  | 0.275(3)  | -0.013(3)    | 0.2675(17)  | 1.1(2)   | 1       |
| 05  | 0.063(3)  | 0.040(4)     | 0.3946(17)  | 1.1(2)   | 1       |
| O6  | 0.198(3)  | 0.464(3)     | 0.2232(17)  | 1.1(2)   | 1       |
|     |           | <i>x</i> =0. | 02          |          |         |
| Lu1 | 0         | 0.7304(9)    | 0.25        | 3.2(3)   | 0.77(8) |
| Gd1 | 0         | 0.7304(9)    | 0.25        | 3.2(3)   | 0.23(8) |

| Lu2 | 0.5            | 0.6840(9)    | 0.25        | 3.4(3)   | 0.93(9)  |  |  |
|-----|----------------|--------------|-------------|----------|----------|--|--|
| Gd2 | 0.5            | 0.6840(9)    | 0.25        | 3.4(3)   | 0.07(9)  |  |  |
| Lu3 | 0.2031(3)      | 0.1892(8)    | 0.0775(2)   | 4.2(3)   | 1.00(10) |  |  |
| W1  | 0.2819(3)      | 0.2577(7)    | 0.3876(2)   | 3.8(3)   | 1        |  |  |
| O1  | 0.300(4)       | 0.108(7)     | 0.559(3)    | 4.3(4)   | 1        |  |  |
| O2  | 0.509(4)       | 0.372(5)     | 0.386(2)    | 4.3(4)   | 1        |  |  |
| O3  | 0.141(4)       | 0.582(6)     | 0.426(3)    | 4.3(4)   | 1        |  |  |
| O4  | 0.268(5)       | -0.015(4)    | 0.262(2)    | 4.3(4)   | 1        |  |  |
| 05  | 0.102(5)       | 0.051(6)     | 0.398(3)    | 4.3(4)   | 1        |  |  |
| O6  | 0.257(5)       | 0.422(5)     | 0.231(3)    | 4.3(4)   | 1        |  |  |
|     |                | <i>x</i> =0. | 05          |          |          |  |  |
| Lu1 | 0              | 0.7375(6)    | 0.25        | 0.77(17) | 0.98(7)  |  |  |
| Gd1 | 0              | 0.7375(6)    | 0.25        | 0.77(17) | 0.02(7)  |  |  |
| Lu2 | 0.5            | 0.6844(6)    | 0.25        | 1.1(2)   | 1.00(5)  |  |  |
| Lu3 | 0.2009(3)      | 0.1876(4)    | 0.07863(17) | 0.63(16) | 0.92(6)  |  |  |
| Gd3 | 0.2009(3)      | 0.1876(4)    | 0.07863(17) | 0.63(16) | 0.08(6)  |  |  |
| W1  | 0.2796(2)      | 0.2548(4)    | 0.38722(16) | 1.00(16) | 1        |  |  |
| O1  | 0.353(3)       | 0.130(4)     | 0.548(2)    | 1.6(3)   | 1        |  |  |
| O2  | 0.508(3)       | 0.370(4)     | 0.382(2)    | 1.6(3)   | 1        |  |  |
| O3  | 0.155(4)       | 0.521(5)     | 0.446(3)    | 1.6(3)   | 1        |  |  |
| O4  | 0.269(4)       | -0.009(4)    | 0.264(2)    | 1.6(3)   | 1        |  |  |
| O5  | 0.075(3)       | 0.038(5)     | 0.403(2)    | 1.6(3)   | 1        |  |  |
| O6  | 0.199(4)       | 0.462(4)     | 0.226(2)    | 1.6(3)   | 1        |  |  |
|     | <i>x</i> =0.10 |              |             |          |          |  |  |

| Lu1 | 0         | 0.7361(11)    | 0.25      | 1.2(4) | 0.92(11) |
|-----|-----------|---------------|-----------|--------|----------|
| Gd1 | 0         | 0.7361(11)    | 0.25      | 1.2(4) | 0.08(11) |
| Lu2 | 0.5       | 0.6852(10)    | 0.25      | 0.6(4) | 0.68(9)  |
| Gd2 | 0.5       | 0.6852(10)    | 0.25      | 0.6(4) | 0.32(9)  |
| Lu3 | 0.2016(4) | 0.1895(8)     | 0.0777(3) | 1.8(4) | 1.00(11) |
| W1  | 0.2797(4) | 0.2547(7)     | 0.3867(3) | 1.4(4) | 1        |
| 01  | 0.325(5)  | 0.106(8)      | 0.529(4)  | 1.7(5) | 1        |
| 02  | 0.516(5)  | 0.376(6)      | 0.392(3)  | 1.7(5) | 1        |
| 03  | 0.125(5)  | 0.541(8)      | 0.434(4)  | 1.7(5) | 1        |
| 04  | 0.273(7)  | -0.030(5)     | 0.268(3)  | 1.7(5) | 1        |
| 05  | 0.059(5)  | 0.031(6)      | 0.382(3)  | 1.7(5) | 1        |
| O6  | 0.216(6)  | 0.465(5)      | 0.221(3)  | 1.7(5) | 1        |
|     |           | <i>x</i> =0.2 | 25        |        |          |
| Lu1 | 0         | 0.7353(9)     | 0.25      | 1.7(3) | 0.92(9)  |
| Gd1 | 0         | 0.7353(9)     | 0.25      | 1.7(3) | 0.08(9)  |
| Lu2 | 0.5       | 0.6836(9)     | 0.25      | 1.3(3) | 0.50(7)  |
| Gd2 | 0.5       | 0.6836(9)     | 0.25      | 1.3(3) | 0.50(7)  |
| Lu3 | 0.2001(3) | 0.1910(6)     | 0.0779(2) | 1.5(3) | 0.80(8)  |
| Gd3 | 0.2001(3) | 0.1910(6)     | 0.0779(2) | 1.5(3) | 0.20(8)  |
| W1  | 0.2790(3) | 0.2538(6)     | 0.3873(2) | 1.6(3) | 1        |
| 01  | 0.342(4)  | 0.133(6)      | 0.548(3)  | 1.9(4) | 1        |
| 02  | 0.506(4)  | 0.368(5)      | 0.382(2)  | 1.9(4) | 1        |
| O3  | 0.150(4)  | 0.532(6)      | 0.435(3)  | 1.9(4) | 1        |
| O4  | 0.273(5)  | -0.016(4)     | 0.272(3)  | 1.9(4) | 1        |

| 05  | 0.069(4)  | 0.046(6)     | 0.399(3)   | 1.9(4)   | 1        |
|-----|-----------|--------------|------------|----------|----------|
| O6  | 0.211(5)  | 0.457(4)     | 0.222(3)   | 1.9(4)   | 1        |
|     |           | <i>x</i> =0. | 75         |          |          |
| Lu1 | 0.5       | 0.1066(8)    | 0.75       | 2.0(6)   | 0.25(10) |
| Gd1 | 0.5       | 0.1066(8)    | 0.75       | 2.0(6)   | 0.75(10) |
| Gd2 | 0         | 0.1329(7)    | 0.75       | 2.0(6)   | 1.00(9)  |
| Lu3 | 0.3285(4) | 0.1136(5)    | 0.1144(13) | 1.9(4)   | 0.20(9)  |
| Gd3 | 0.3285(4) | 0.1136(5)    | 0.1144(13) | 1.9(4)   | 0.80(9)  |
| W1  | 0.1543(3) | 0.1451(4)    | 0.4346(11) | 1.9(3)   | 1        |
| 01  | 0.246(3)  | 0.045(5)     | 0.388(10)  | 0.6(5)   | 1        |
| O2  | 0.066(3)  | 0.039(3)     | 0.463(10)  | 0.6(5)   | 1        |
| O3  | 0.227(3)  | 0.201(4)     | 0.738(9)   | 0.6(5)   | 1        |
| O4  | 0.100(3)  | 0.218(4)     | 0.120(13)  | 0.6(5)   | 1        |
| 05  | 0.094(4)  | 0.259(3)     | 0.598(13)  | 0.6(5)   | 1        |
| O6  | 0.604(3)  | 0.012(3)     | 0.570(9)   | 0.6(5)   | 1        |
|     |           | <i>x</i> =0. | 99         |          |          |
| Lu1 | 0.5       | 0.1084(5)    | 0.75       | 1.7(3)   | 0.07(7)  |
| Gd1 | 0.5       | 0.1084(5)    | 0.75       | 1.7(3)   | 0.93(7)  |
| Lu2 | 0         | 0.1328(4)    | 0.75       | 1.4(3)   | 0.01(5)  |
| Gd2 | 0         | 0.1328(4)    | 0.75       | 1.4(3)   | 0.99(5)  |
| Gd3 | 0.3275(3) | 0.1150(4)    | 0.1135(9)  | 1.49(19) | 1.00(5)  |
| W1  | 0.1535(2) | 0.1467(3)    | 0.4367(8)  | 1.66(17) | 1        |
| O1  | 0.236(2)  | 0.046(3)     | 0.402(8)   | 2.6(3)   | 1        |
| O2  | 0.087(2)  | 0.039(3)     | 0.472(7)   | 2.6(3)   | 1        |

| 03 | 0.234(2) | 0.216(3) | 0.730(7)  | 2.6(3) | 1 |  |
|----|----------|----------|-----------|--------|---|--|
| O4 | 0.113(2) | 0.212(3) | 0.167(8)  | 2.6(3) | 1 |  |
| 05 | 0.084(3) | 0.264(2) | 0.598(10) | 2.6(3) | 1 |  |
| O6 | 0.598(2) | 0.013(2) | 0.604(10) | 2.6(3) | 1 |  |

Table S3. Main bond lengths (Å) of  $Lu_2WO_6$  and  $(Lu_{0.99-x}Gd_xBi_{0.01})_2WO_6$ 

| Pure Lu <sub>2</sub> WO <sub>6</sub> |            |                      |           |  |  |
|--------------------------------------|------------|----------------------|-----------|--|--|
| Lu1—O3                               | 2.438(21)  | Lu1—O4 <sup>i</sup>  | 2.422(17) |  |  |
| Lu1—O5 <sup>i</sup>                  | 2.245(19)  | Lu1—O6               | 2.134(16) |  |  |
| Lu2—O1 <sup>ii</sup>                 | 2.404(20)  | Lu2—O2               | 2.228(17) |  |  |
| Lu2—O4 <sup>i</sup>                  | 2.358(16)  | Lu2—06               | 2.497(17) |  |  |
| Lu3—O1 <sup>iii</sup>                | 2.119(19)  | Lu3—O2 <sup>iv</sup> | 2.343(17) |  |  |
| Lu3—O3 <sup>v</sup>                  | 3.153(18)  | Lu3—O3 <sup>ii</sup> | 2.120(21) |  |  |
| Lu3—04                               | 2.299(18)  | Lu3—O5 <sup>v</sup>  | 2.272(18) |  |  |
| Lu3—O5 <sup>iii</sup>                | 2.330(19)  | Lu3—06               | 2.188(17) |  |  |
| W1—O1                                | 1.905(20)  | W1—O1 <sup>vi</sup>  | 3.351(18) |  |  |
| W1—O2                                | 1.820(17)  | W1—O2 <sup>vii</sup> | 3.285(17) |  |  |
| W1—O3                                | 1.910(19)  | W1—O4                | 1.955(17) |  |  |
| W1—O5                                | 1.991(19)  | W1—O6                | 2.119(18) |  |  |
|                                      | <i>x</i> = | = 0                  |           |  |  |
| Lu1—O3                               | 2.415(21)  | Lu1—O4 <sup>i</sup>  | 2.416(17) |  |  |
| Lu1—O5 <sup>i</sup>                  | 2.237(19)  | Lu1—O6               | 2.149(17) |  |  |
| Lu2—O1 <sup>ii</sup>                 | 2.391(19)  | Lu2—O2               | 2.230(16) |  |  |
| Lu2—O4 <sup>i</sup>                  | 2.370(16)  | Lu2—O6               | 2.500(17) |  |  |

| Lu3—O1 <sup>iii</sup> | 2.129(14)  | Lu3—O2 <sup>iv</sup> | 2.284(11) |
|-----------------------|------------|----------------------|-----------|
| Lu3—O3 <sup>v</sup>   | 3.192(18)  | Lu3—O3 <sup>ii</sup> | 2.154(21) |
| Lu3—O4                | 2.305(18)  | Lu3—O5 <sup>v</sup>  | 2.226(18) |
| Lu3—O5 <sup>iii</sup> | 2.388(19)  | Lu3—06               | 2.186(17) |
| W1—O1                 | 1.920(20)  | W1—O1 <sup>vi</sup>  | 3.327(12) |
| W1—O2                 | 1.860(11)  | W1-O2 <sup>vii</sup> | 3.323(16) |
| W1—O3                 | 1.868(19)  | W1—O4                | 1.942(17) |
| W1—O5                 | 2.005(18)  | W1—O6                | 2.099(17) |
|                       | <i>x</i> = | 0.02                 |           |
| Lu1—O3                | 2.141(31)  | Lu1—O4 <sup>i</sup>  | 2.398(29) |
| Lu1—O5 <sup>i</sup>   | 2.359(32)  | Lu1—06               | 2.577(28) |
| Gd1—O3                | 2.141(31)  | Gd1—O4 <sup>i</sup>  | 2.398(29) |
| Gd1—O5 <sup>i</sup>   | 2.359(32)  | Gd1—O6               | 2.577(28) |
| Lu2—O1 <sup>ii</sup>  | 2.537(32)  | Lu2—O2               | 2.234(24) |
| Lu2—O4 <sup>i</sup>   | 2.388(27)  | Lu2—06               | 2.259(28) |
| Gd2—O1 <sup>ii</sup>  | 2.537(32)  | Gd2—O2               | 2.234(24) |
| Gd2—O4 <sup>i</sup>   | 2.388(27)  | Gd2—O6               | 2.259(28) |
| Lu3—O1 <sup>iii</sup> | 1.762(34)  | Lu3—O2 <sup>iv</sup> | 2.311(24) |
| Lu3—O3 <sup>v</sup>   | 3.309(26)  | Lu3—O3 <sup>ii</sup> | 2.041(32) |
| Lu3—O4                | 2.275(21)  | Lu3—O5 <sup>v</sup>  | 2.490(29) |
| Lu3—O5 <sup>iii</sup> | 2.339(32)  | Lu3—06               | 2.071(30) |
| W1—O1                 | 2.052(33)  | W1—O2                | 1.817(24) |
| W1—O2 <sup>vii</sup>  | 3.276(23)  | W1—O3                | 2.113(29) |
| W1—O4                 | 1.998(21)  | W1—O5                | 1.765(30) |

|                       | x =        | 0.05                 |           |
|-----------------------|------------|----------------------|-----------|
| Lu1—O3                | 2.494(30)  | Lu1—O4 <sup>i</sup>  | 2.399(23) |
| Lu1—O5 <sup>i</sup>   | 2.302(24)  | Lu1—O6               | 2.153(23) |
| Gd1—O3                | 2.494(30)  | Gd1—O4 <sup>i</sup>  | 2.399(23) |
| Gd1—O5 <sup>i</sup>   | 2.302(24)  | Gd1—06               | 2.153(23) |
| Lu2—O1 <sup>ii</sup>  | 2.464(21)  | Lu2—O2               | 2.216(21) |
| Lu2—O4 <sup>i</sup>   | 2.410(23)  | Lu2—06               | 2.506(23) |
| Lu3—O1 <sup>iii</sup> | 2.107(19)  | Lu3—O2 <sup>iv</sup> | 2.332(17) |
| Lu3—O3 <sup>v</sup>   | 3.160(23)  | Lu3—O3 <sup>ii</sup> | 2.108(29) |
| Lu3—O4                | 2.267(21)  | Lu3—O5 <sup>v</sup>  | 2.280(18) |
| Lu3—O5 <sup>iii</sup> | 2.295(23)  | Lu3—06               | 2.203(21) |
| Gd3—O1 <sup>iii</sup> | 2.107(19)  | Gd3—O2 <sup>iv</sup> | 2.332(17) |
| Gd3—O3 <sup>v</sup>   | 3.160(23)  | Gd3—O3 <sup>ii</sup> | 2.108(29) |
| Gd3—O4                | 2.267(21)  | Gd3—O5 <sup>v</sup>  | 2.280(18) |
| Gd3—O5 <sup>iii</sup> | 2.295(23)  | Gd3—O6               | 2.203(21) |
| W1—O1                 | 1.871(21)  | W1—O1 <sup>vi</sup>  | 3.361(18) |
| W1—O2                 | 1.839(17)  | W1—O2 <sup>vii</sup> | 3.333(21) |
| W1—O3                 | 1.898(25)  | W1—O4                | 1.951(21) |
| W1—O5                 | 1.963(20)  | W1—O6                | 2.071(21) |
|                       | <i>x</i> = | 0.10                 |           |
| Lu1—O3                | 2.293(42)  | Lu1—O4 <sup>i</sup>  | 2.366(40) |
| Lu1—O5 <sup>i</sup>   | 2.122(32)  | Lu1—06               | 2.254(33) |
| Gd1—O3                | 2.293(42)  | Gd1—O4 <sup>i</sup>  | 2.366(40) |

| Gd1—O5 <sup>i</sup>   | 2.122(32) | Gd1—O6               | 2.254(33) |
|-----------------------|-----------|----------------------|-----------|
| Lu2—O1 <sup>ii</sup>  | 2.737(42) | Lu2—O2               | 2.268(32) |
| Lu2—O4 <sup>i</sup>   | 2.326(37) | Lu2—06               | 2.386(34) |
| Gd2—O1 <sup>ii</sup>  | 2.737(42) | Gd2—O2               | 2.268(32) |
| Gd2—O4 <sup>i</sup>   | 2.326(37) | Gd2—O6               | 2.386(34) |
| Lu3—O1 <sup>iii</sup> | 1.965(38) | Lu3—O2 <sup>iv</sup> | 2.292(29) |
| Lu3—O3 <sup>v</sup>   | 3.061(33) | Lu3—O3 <sup>ii</sup> | 2.123(43) |
| Lu3—04                | 2.376(31) | Lu3—O5 <sup>v</sup>  | 2.284(29) |
| Lu3—O5 <sup>iii</sup> | 2.485(32) | Lu3—06               | 2.155(30) |
| W1—O1                 | 1.739(43) | W1—O1 <sup>vi</sup>  | 3.463(33) |
| W1—O2                 | 1.880(29) | W1-O2 <sup>vii</sup> | 3.233(32) |
| W1—O3                 | 2.061(37) | W1—O4                | 2.004(29) |
| W1—O5                 | 2.031(30) | W1—O6                | 2.120(31) |
|                       | x = 0.25  | 5                    |           |
| Lu1—O3                | 2.373(32) | Lu1—O4 <sup>i</sup>  | 2.411(27) |
| Lu1—O5 <sup>i</sup>   | 2.321(32) | Lu1—O6               | 2.255(26) |
| Gd1—O3                | 2.373(32) | Gd1—O4 <sup>i</sup>  | 2.411(27) |
| Gd1—O5 <sup>i</sup>   | 2.321(32) | Gd1—O6               | 2.255(26) |
| Lu2—O1 <sup>ii</sup>  | 2.494(32) | Lu2—O2               | 2.236(24) |
| Lu2—O4 <sup>i</sup>   | 2.401(26) | Lu2—O6               | 2.445(27) |
| Gd2—O1 <sup>ii</sup>  | 2.494(32) | Gd2—O2               | 2.236(24) |
| Gd2—O4 <sup>i</sup>   | 2.401(26) | Gd2—O6               | 2.445(27) |
| Lu3—O1 <sup>iii</sup> | 2.099(29) | Lu3—O2 <sup>iv</sup> | 2.351(24) |
| Lu3—O3 <sup>v</sup>   | 3.181(25) | Lu3—O3 <sup>ii</sup> | 2.146(32) |

| Lu3—O4                 | 2.391(30)  | Lu3—O5 <sup>v</sup>    | 2.252(23) |
|------------------------|------------|------------------------|-----------|
| Lu3—O5 <sup>iii</sup>  | 2.377(32)  | Lu3—06                 | 2.141(28) |
| Gd3—O1 <sup>iii</sup>  | 2.099(29)  | Gd3—O2 <sup>iv</sup>   | 2.351(24) |
| Gd3—O3 <sup>v</sup>    | 3.181(25)  | Gd3—O3 <sup>ii</sup>   | 2.146(32) |
| Gd3—O4                 | 2.391(30)  | Gd3—O5 <sup>v</sup>    | 2.252(23) |
| Gd3—O5 <sup>iii</sup>  | 2.377(32)  | Gd3—06                 | 2.141(28) |
| W1—O1                  | 1.871(32)  | W1—O1 <sup>vi</sup>    | 3.452(26) |
| W1—O2                  | 1.836(24)  | W1—O2 <sup>vii</sup>   | 3.368(24) |
| W1—O3                  | 1.920(29)  | W1—O4                  | 1.929(27) |
| W1—O5                  | 1.965(25)  | W1—06                  | 2.106(30) |
|                        | <i>x</i> = | 0.75                   |           |
| Lu1—O4 <sup>viii</sup> | 2.770(40)  | Lu1—O5 <sup>viii</sup> | 2.523(54) |
| Lu1—O6                 | 2.438(36)  | Lu1—O6 <sup>ix</sup>   | 2.413(40) |
| Gd1—O4 <sup>viii</sup> | 2.770(40)  | Gd1-O5 <sup>viii</sup> | 2.523(54) |
| Gd1—O6                 | 2.438(36)  | Gd1—O6 <sup>ix</sup>   | 2.413(40) |
| Gd2—O2                 | 2.382(41)  | Gd2—O2 <sup>ix</sup>   | 2.322(38) |
| Gd2—O4 <sup>x</sup>    | 2.359(58)  | Gd2—O5                 | 2.402(44) |
| Lu3—01                 | 2.407(42)  | Lu3—O1 <sup>iii</sup>  | 2.328(51) |
| Lu3—O3 <sup>xi</sup>   | 2.402(44)  | Lu3—O3 <sup>xii</sup>  | 2.481(43) |
| Lu3—O4 <sup>xiii</sup> | 2.717(45)  | Lu3—O5 <sup>xii</sup>  | 2.197(52) |
| Lu3—O6 <sup>iv</sup>   | 2.038(37)  | Lu3—O6 <sup>vi</sup>   | 2.220(41) |
| Gd3—O1                 | 2.407(42)  | Gd3—O1 <sup>iii</sup>  | 2.328(51) |
| Gd3—O3 <sup>xi</sup>   | 2.402(44)  | Gd3—O3 <sup>xii</sup>  | 2.481(43) |
| Gd3—O4 <sup>xiii</sup> | 2.717(45)  | Gd3—O5 <sup>xii</sup>  | 2.197(52) |

| Gd3—O6 <sup>iv</sup>   | 2.038(37)  | Gd3—O6 <sup>vi</sup>   | 2.220(41) |
|------------------------|------------|------------------------|-----------|
| W1—O1                  | 1.944(42)  | W1—O1 <sup>ix</sup>    | 3.237(52) |
| W1—O2                  | 1.906(33)  | W1—O2 <sup>iii</sup>   | 3.244(44) |
| W1—O3                  | 1.815(44)  | W1—O3 <sup>xii</sup>   | 2.944(39) |
| W1—O4                  | 1.846(62)  | W1—O5                  | 1.971(45) |
|                        | <i>x</i> = | 0.99                   |           |
| Lu1—O4 <sup>viii</sup> | 2.858(28)  | Lu1—O5 <sup>viii</sup> | 2.433(42) |
| Lu1—O6                 | 2.262(24)  | Lu1—O6 <sup>ix</sup>   | 2.498(40) |
| Gd1—O4 <sup>viii</sup> | 2.858(28)  | Gd1—O5 <sup>viii</sup> | 2.433(42) |
| Gd1—O6                 | 2.262(24)  | Gd1—O6 <sup>ix</sup>   | 2.498(40) |
| Lu2—O2                 | 2.592(28)  | Lu2—O2 <sup>ix</sup>   | 2.475(32) |
| Lu2—O4 <sup>x</sup>    | 2.607(37)  | Lu2—O5                 | 2.327(32) |
| Gd2—O2                 | 2.592(28)  | Gd2—O2 <sup>ix</sup>   | 2.475(32) |
| Gd2—O4 <sup>x</sup>    | 2.607(37)  | Gd2—O5                 | 2.327(32) |
| Gd3—O1                 | 2.593(30)  | Gd3—O1 <sup>iii</sup>  | 2.400(33) |
| Gd3—O3 <sup>xi</sup>   | 2.454(34)  | Gd3—O3 <sup>xii</sup>  | 2.413(31) |
| Gd3—O4 <sup>xiii</sup> | 2.812(33)  | Gd3—O5 <sup>xii</sup>  | 2.237(39) |
| Gd3—O6 <sup>iv</sup>   | 2.250(30)  | Gd3—O6 <sup>vi</sup>   | 2.180(38) |
| W1—O1                  | 1.812(26)  | W1—O1 <sup>ix</sup>    | 3.282(37) |
| W1—O2                  | 1.673(28)  | W1—O2 <sup>iii</sup>   | 3.192(35) |
| W1—O3                  | 1.898(33)  | W1—O3 <sup>xii</sup>   | 2.755(27) |
| W1—O4                  | 1.589(39)  | W1—05                  | 2.095(33) |

Symmetry codes: (i) x, y+1, z; (ii) x, -y+1, z+1/2; (iii) x, -y, z+1/2; (iv) -x+1, y, z+1/2; (v) -x, y, -z+1/2; (vi) -x+1, -y, -z+1; (vii) -x+1, -y+1, -z+1; (viii) x, -y, z+1/2; (ix) x, -y, z+1/2; (x) x, y, z+1; (xi) x, y, z-1; (xii) -x, -y, -z+1; (xiii) -x, -y, -z



Fig. S2 SEM morphology (a), EDS analysis (b), and the mapping images of Lu, O, Gd, Bi elements for the  $(Lu_{0.94}Gd_{0.05}Bi_{0.01})_2WO_6$  sample (c-f).



Fig. S3 The relative intensity of the strongest emission as a function of the  $Gd^{3+}$  content for  $(Lu_{0.99-x}Gd_xBi_{0.01})_2WO_6$  (x = 0-0.50).



Fig. S4 The normalized PL spectra of  $(Lu_{0.99-x}Gd_xBi_{0.01})_2WO_6$  for x=0-0.50.



**Fig. S5** Gaussian fitting of the emission spectra of  $(Lu_{0.99-x}Gd_xBi_{0.01})_2WO_6$ , where (a) x=0, (b) x=0.02, (c) x=0.05, (d) x=0.10, (e) x=0.25 and (f) x=0.50.

| <i>x</i> value | Peak 1 (nm) | Peak 2 (nm) | Peak 3 (nm) |
|----------------|-------------|-------------|-------------|
| <i>x</i> =0    | 500         | 555         | 679         |
| <i>x</i> =0.02 | 499         | 553         | 674         |
| <i>x</i> =0.05 | 498         | 553         | 678         |
| <i>x</i> =0.10 | 499         | 553         | 677         |
| <i>x</i> =0.25 | 481         | 526         | 584         |
| <i>x</i> =0.50 | 473         | 515         | 572         |

**Table S4.** A summary of the Gaussian fitting results for the emission spectra of  $(Lu_{0.99-x}Gd_xBi_{0.01})_2WO_6$ 

**Table S5.** A summary of the excitation wavelength, emission wavelength, quantum yield, and FWHM for  $(Lu_{0.99-x}Gd_xBi_{0.01})_2WO_6$ 

| J              | $(-0.99 - 1)^{-1}$ | $-\lambda = -0.0172 - 0$ |                   |           |
|----------------|--------------------|--------------------------|-------------------|-----------|
| <i>x</i> value | Ex (nm)            | Em (nm)                  | Quantum Yield (%) | FWHM (eV) |
| x=0            | 347                | 517                      | 13.97%            | 0.61      |
| <i>x</i> =0.02 | 347                | 520                      | 16.91%            | 0.62      |
| <i>x</i> =0.05 | 346                | 513                      | 18.88%            | 0.63      |
| <i>x</i> =0.10 | 347                | 516                      | 17.18%            | 0.62      |
| <i>x</i> =0.25 | 345                | 516                      | 14.01%            | 0.61      |
| <i>x</i> =0.50 | 343                | 511                      | 6.59%             | 0.62      |
| <i>x</i> =0.75 | 335                | 615                      | 1.57%             | 0.72      |
| <i>x</i> =0.99 | 332                | 609                      | 4.09%             | 0.70      |



Fig. S6 The results of quantum yield measurement for  $(Lu_{0.99-x}Gd_xBi_{0.01})_2WO_6$ , with (a) x=0; (b) x=0.02; (c) x=0.05; (d) x=0.10; (e) x=0.25; (f) x=0.50; (g) x=0.75; (h) x=0.99...



Fig. S7 Gaussian deconvolution of the emission bands of  $(Lu_{0.94}Gd_{0.05}Bi_{0.01})_2WO_6$  obtained under the different excitation wavelengths indicated in the figure (300-360 nm).

| Ex  | Peak 1 (nm) | Peak 2 (nm) | Peak 3 (nm) |
|-----|-------------|-------------|-------------|
| 300 | 458         | 503         | 562         |
| 305 | 459         | 504         | 563         |
| 310 | 464         | 509         | 567         |
| 315 | 468         | 513         | 570         |
| 320 | 477         | 522         | 580         |
| 330 | 499         | 553         | 683         |
| 335 | 500         | 555         | 689         |
| 340 | 500         | 555         | 684         |
| 346 | 499         | 554         | 682         |
| 350 | 500         | 555         | 693         |
| 355 | 500         | 554         | 684         |
| 360 | 501         | 556         | 707         |
| 365 | 501         | 556         | 720         |

Table S6. A summary of the peak position for the three sub-peaks of the  $(Lu_{0.94}Gd_{0.05}Bi_{0.01})_2WO_6$  phosphor



**Fig. S8** Temperature-dependent PL spectra of  $(Lu_{0.94}Gd_{0.05}Bi_{0.01})_2WO_6$  sample under the excitation of 346 nm UV light (a); the relative intensity of the main emission as function of the measurement temperature (b). The inset in (b) is the In[(I<sub>0</sub>/I)-1] *versus* 1/(KT) plot for the determination of activation energy for thermal quenching of luminescence.



**Fig. S9** Decay curves for the main emissions of  $(Lu_{0.99-x}Gd_xBi_{0.01})_2WO_6$ , with (a) x=0; (b) x=0.02; (c) x=0.05; (d) x=0.10; (e) x=0.25; (f) x=0.50; (g) x=0.75; (h) x=0.99.

| x00xD10.0      | 1)2 06   |                |                |          |          |          |          |                 |
|----------------|----------|----------------|----------------|----------|----------|----------|----------|-----------------|
| <i>x</i> value | $A_1$    | A <sub>2</sub> | A <sub>3</sub> | $\tau_1$ | $\tau_2$ | $\tau_3$ | $\chi^2$ | $\tau^*(\mu s)$ |
| x=0            | 12849.54 | 1045.50        | 1990.42        | 52.60    | 474.98   | 1526.10  | 0.999    | 1.166           |
| <i>x</i> =0.02 | 4091.39  | 958.66         | 2007.73        | 77.58    | 644.13   | 1667.37  | 0.999    | 1.402           |
| <i>x</i> =0.05 | 13774.78 | 925.99         | 2092.18        | 51.59    | 522.44   | 1625.95  | 0.999    | 1.266           |
| <i>x</i> =0.10 | 1409.46  | 1008.53        | 1734.12        | 192.14   | 941.78   | 1806.69  | 0.999    | 1.518           |
| <i>x</i> =0.25 | 65043.61 | 1226.31        | 1901.12        | 35.91    | 393.09   | 1553.83  | 0.999    | 0.843           |
| <i>x</i> =0.50 | 62742.30 | 1286.73        | 1579.15        | 39.14    | 457.15   | 1409.84  | 0.999    | 0.665           |
| <i>x</i> =0.75 | 35108.49 | 2209.20        | 705.04         | 50.23    | 327.62   | 1332.80  | 0.999    | 0.460           |
| <i>x</i> =0.99 | 19292.59 | 1505.46        | 1787.55        | 45.94    | 401.76   | 1448.55  | 0.999    | 0.989           |

**Table S7.** A summary of the fluorescence decay parameters for  $(Lu_{0.99}, xGd_xBi_{0.01})_2WO_6$ 

**Table S8.** The Ra value, CCT and CIE chromaticity coordinates of LED1 under different driving currents.

| Current (mA) | CIE(x, y)   | CCT (K) | Ra   |
|--------------|-------------|---------|------|
| 20           | (0.38,0.38) | 3951    | 91.3 |
| 30           | (0.38,0.38) | 3959    | 89.4 |
| 40           | (0.38,0.37) | 3957    | 88.5 |
| 50           | (0.38,0.37) | 3948    | 87.8 |
| 60           | (0.38,0.37) | 3951    | 87.3 |
| 70           | (0.38,0.36) | 3917    | 84.9 |
| 80           | (0.38,0.37) | 3935    | 85.1 |
| 90           | (0.38,0.36) | 3902    | 82.4 |
| 100          | (0.38,0.36) | 3923    | 82.8 |

**Table S9.** The Ra value, CCT and CIE chromaticity coordinates of LED2 under different driving currents.

| Current (mA) | CIE (x, y)   | CCT (K) | Ra |
|--------------|--------------|---------|----|
| 20           | (0.39, 0.39) | 3721    | 83 |
| 30           | (0.39, 0.38) | 3712    | 86 |
| 40           | (0.39, 0.37) | 3725    | 87 |
| 50           | (0.39, 0.36) | 3737    | 89 |
| 60           | (0.38, 0.36) | 3763    | 91 |
| 70           | (0.38, 0.35) | 3795    | 92 |
| 80           | (0.37, 0.35) | 3838    | 91 |
| 90           | (0.37, 0.34) | 3881    | 93 |
| 100          | (0.37, 0.34) | 3904    | 94 |