Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Near-white light emission from single crystals of cationic dinuclear gold(I) complexes with bridged diphosphine ligands

Masahisa Osawa,*a Sakie Soma, Hiroyuki Kobayashi, Yuya Tanaka, b and Mikio Hoshino Hoshino

^{*a*} Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan

^b Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Contents

Experimental Detail	page
1. General Information	53–S4
2. NMR Experiments	S5–S7
Fig. S1 ¹ H NMR spectrum of 1D in CD_2Cl_2 at 293 K.	
Fig. S2 ³¹ P { ¹ H} NMR spectrum of 1D in CD_2Cl_2 at 293 K.	
Fig. S3 ¹ H NMR spectrum of 2D in CD_2Cl_2 at 293 K.	
Fig. S4 ³¹ P { ¹ H} NMR spectrum of 2D in CD_2Cl_2 at 293 K.	
Fig. S5 ¹ H NMR spectrum of 3D in CD_2Cl_2 at 293 K.	
Fig. S6 ³¹ P { ¹ H} NMR spectrum of 3D in CD_2Cl_2 at 293 K.	
3. Crystal Structure determination	S8–S11
Table S1 Crystallographic data for 1.2CH ₂ Cl ₂ , 2, and 3	
Fig. S7 Packing structures of 2 and 3.	
4. Photophysical data	S11–S12
Fig. S8 Excitation spectra of 2 and 3.	
Fig. S9 TGA data for $1 \cdot 2C_2Cl_2$ under argon atmosphere.	
Table S2 Temperature-dependent changes of lifetimes for 2 and 3	

5. Theoretical studies

 Table S3 Natural transition orbital (NTO) analyses (A) for 2 and (B) for 3 at the structure determined by X-ray crystallography.

Table S4 Calculated energy differences between the sublevels (M1, M2, and M3) of the T_1 and T_2 states for **2** (A) and **3** (B).

Fig. S10 Experimental corrected emission (right) and excitation spectra (left) at 293 K (bold line), and calculated absorption spectra (thin line) and FC singlet and triplet transitions (solid bar). (A) for **2** and (B) for **3**.

Table S5 Calculation results (A) for 2 and (B) for 3: the optimized structures and excited state energy.

Table S6 Natural transition orbital (NTO) analyses (A) for 2 and (B) for 3 at the optimized S_0 structure.

Table S7 Calculated energy differences between the sublevels (M1, M2, and M3) of the S_0 states for **2** (A) and **3** (B).

Table S8 Natural transition orbital (NTO) analyses (A) for **2** and (B) for **3** at the optimized S_1 , T_1 , and T_2 structures.

Table S9 Calculated energy differences between the sublevels (M1, M2, and M3) of the T_1 and T_2 states for **2** (A) and **3** (B).

Table S10 Calculated energy levels, emission energy, and oscillator strength valued of the S_0 , S_1 , T_1 , and T_2 at each optimized structure for **2** (A) and **3** (B)

Fig. S11 Calculated energy levels of the S₁, T₁, and T₂ at each optimized structure for 3.

Table S11 Geometry data of 2 for the optimized S1 state

Table S12 Geometry data of 2 for the optimized T₁ state

Table S13 Geometry data of 3 for the optimized T₂ state

Table S14 Geometry data of **3** for the optimized S_1 state

Table S15 Geometry data of 3 for the optimized T₁ state

Table S16 Geometry data of **3** for the optimized T₂ state

References

S32

1. General Information

¹H and ³¹P NMR spectra were recorded on a Bruker AVANCE-400 spectrometer. ¹H chemical shifts were referenced to residual solvent peaks. ³¹P chemical shifts were referenced to an external standard, 85% phosphoric acid ($\delta = 0$ ppm). Elemental analyses (C and H) were carried out using an elemental analyser (Vario EL CHNOS) from Elementar. For the photo-physical studies, dissolved oxygen was removed by repeated freeze-pump-thaw cycles. Steady-state emission spectra were recorded at room temperature and at 77 K using a Hitachi F-7000 spectrofluorometer. The intensity distribution of the Xenon lamp incorporated in the spectrofluorometer was corrected using Rhodamine B in ethylene glycol. The output of the photomultiplier tube was calibrated between 300 and 850 nm with a secondary standard lamp.

Laser photolysis studies were performed using a Nd:YAG laser (Minilite II, Continuum Ltd.) equipped with second, third, and fourth harmonic generators. The laser pulses used for the emission lifetime measurements were of the third harmonic (355 nm). The duration and energy of the laser pulse were 5 ns and 8 mJ/pulse, respectively. The system used to monitor the emission decay was reported elsewhere.^{S1}

An Optistat DN-V2 cryostat from Oxford Instruments was used to measure the emission spectra and lifetimes in the temperature range 293–83 K. Crystalline powders of samples used for emission measurements were sealed in quartz tubes with a diameter of 3 mm. Optical measurements at 77 K were carried out at the temperature of liquid nitrogen using a Dewar vessel with four optical windows. After filling the vessel with liquid nitrogen, the sample, which was placed in a quartz tube with a diameter of 5 mm, was immersed into the liquid nitrogen for rapid cooling, and luminescence spectra and lifetimes were measured.

Emission quantum yields were determined at room temperature and at 77 K using an absolute PL quantum yield measurement system (C-9920-02G, Hamamatsu).^{S2}

A suitable crystal for 1, 2, and 3 was selected and mounted using Paratone-N oil on a Cryo-Loop. Xray Diffraction data was collected at 93 K under a cold nitrogen gas stream on a Rigaku XtaLAB Pro MM007HF Synergy-DW X-ray diffractometer system, using graphite-monochromated Cu-K α radiation ($\lambda = 1.54184$ Å). Intensity data were collected by an ω -scan with 0.5° oscillations for each frame. Bragg spots were integrated using the CrysAlis^{Pro} program package.^{S3} Structures were solved by SHELXT^{S4} and refined by SHELXL.^{S5} All non-disordered non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed at calculated positions and refined by applying riding models. CCDC reference numbers are 2173250 for 1, 2173251 for 2, and 2173252 for 3, respectively.

The PBE^{S6}-D3(BJ)^{S7}/TZP^{S8} level of theory was applied for all density functional theory (DFT)

calculations using the ADF2019.303 package.^{S9,S10} All calculations were performed with tight criteria (very good).

The ground state (S₀), first excited singlet state (S₁), the first excited triplet state (T₁) and the second triplet state (T₂) were optimized by TD-DFT calculations at gas-phase conditions.^{S11} The input coordinates were extracted from the X-ray crystallographic data at 93 K. The perturbative spin-orbit coupling (p-SOC) calculations^{S10f} for the first 50 singlet and triplet excited states were performed at the same level of theory. Natural transition orbitals (NTOs) were generated by orbital transformation followed by a singular value decomposition of the transition density matrix. In the NTO representation, the electronic transitions can be expressed by one single "hole (approximately HOMO) - electron (approximately LUMO)" pair with an associated eigenvalue of essentially one, even for transitions that are highly mixed in the canonical MO basis. This procedure can be a helpful strategy for obtaining a simple orbital interpretation of "what got excited to where".^{S12}

2. NMR Experiments

Fig. S1 ¹H NMR spectrum of 1 in CD_2Cl_2 at 293 K.

Fig. S2 ³¹P {¹H} NMR spectrum of 1 in CD_2Cl_2 at 293 K.

Fig. S3 ¹H NMR spectrum of **2** in CD_2Cl_2 at 293 K.

Fig. S4 ³¹P {¹H} NMR spectrum of 2 in CD_2Cl_2 at 293 K.

Fig. S5 ¹H NMR spectrum of **3** in CD_2Cl_2 at 293 K.

Fig. S6 ${}^{31}P$ { ${}^{1}H$ } NMR spectrum of 3 in CD₂Cl₂ at 293 K.

3. Crystal Structure determination

Table S1. Crystallographic data for $1{\ensuremath{\cdot}}{\rm 2CH_2Cl_2},2$ and 3

	$1 \cdot 2 CH_2 Cl_2$	2	3• 2H ₂ O
formula	$C_{38}H_{38}Au_2N_2P_2 \bullet 2(CH_2Cl_2)$	$C_{42}H_{46}Au_2N_2P_2\bullet 2(BF_4)$	$C_{46}H_{54}Au_2N_2P_2\bullet 2(BF_4)$
	•2(BF ₄)		•2H ₂ O
formula weight	1322.05	1208.30	1282.42
cryst syst	triclinic	orthorhombic	orthorhombic
space group	Р	Fdd2	Fdd2
<i>a</i> / Å	11.87700(18)	26.9142(12)	28.1116(8)
b / Å	12.1739(2)	24.8726(17)	23.6525(7)
<i>c</i> / Å	16.1311(4)	13.0916(6)	14.2329(5)
α / deg	96.5705(16)	90	90
β/\deg	98.6092(15)	90	90
γ/\deg	99.5936(13)	90	90
$V/\text{\AA}^3$	2250.50(7)	8763.9(8)	9463.6(5)
Ζ	2	8	8
$d_{\rm calcd}$ / g cm ⁻³	1.951	1.832	1.800
T/K	93(2)	93(2)	93(2)
radiation	Cu Kα	Cu Kα	Cu Ka
	$((\lambda = 1.54184 \text{ Å})$	$(\lambda = 1.54184 \text{ Å})$	$(\lambda = 1.54184 \text{ Å})$
μ / cm ⁻¹	15.513	13.672	12.718
diffractometer	Rigaku XtaLAB Pro	Rigaku XtaLAB Pro	Rigaku XtaLAB Pro
	MM007HF	MM007HF	MM007HF
max 20 / deg	75	75	75
reflns collcd	42133	10347	12087
indep reflns	9088	4461	4860
	(Rint = 0.0554)	(<i>R</i> int = 0.0572)	(Rint = 0.0268)
no. of param refined	547	265	294
$R1$, ^[a] $wR2$ ($I > 2\sigma I$) ^[b]	0.0448, 0.1078	0.0611, 0.1673	0.0239, 0.0616
S	1.090	1.053	1.073

[a] $RI = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|$. [b] $wR2 = [\Sigma w(|Fo| - |Fc|)^2 / \Sigma w |Fo|^2]^{1/2}$

Fig. S7 Packing structuress of 2 (A) and 3 (B); view along c axis.

4. Photophysical Properties

Fig. S8 Excitation spectra of 1 and 2: the monitoring wavelength at $\lambda_{em} = 415$ nm (blue solid line) and 600 nm (blue dashed) for 1, and 430 nm (green solid) and 630 nm (green solid) for 2 at 293 K.

Table S2.	Temperature	-dependent	changes	of lifetimes
-----------	-------------	------------	---------	--------------

(A)	Complex 2
-----	-----------

Temp. / K	τ / μs	τ / μs
	at 430 nm	at 600 nm
293.0	3.9	3.8
273.6	7.5	7.4
254.2	13.0	12.8
234.9	18.4	18.0
215.5	23.0	23.0
196.1	26.0	26.0
176.7	24.0	24.0
157.3	23.7	23.5
138.0	23.4	-
118.6	23.8	-
99.2	24.1	-
83.9	24.4	-
77.0	26.2	-

Temp. / K	τ / μs	τ / μs	τ / μs
	at 430 nm	at 500 nm	at 590 nm
322.1	9.2	9.2	9.7
309.5	10.6	10.7	11.4
293.0	12.8	12.8	13.0
263.9	17.9	17.7	17.9
234.9	25.1	24.8	25.0
205.8	33.6	33.4	33.7
176.7	41.9	42.4	41.0
147.6	49.1	49.1	44.6
118.6	52.2	53.7	-
108.9	52.7	55.1	-
99.2	53.2	55.3	-
94.3	53.4	55.3	-
89.5	53.4	55.2	-
83.8	53.5	55.2	-
77.0	53.5	55.3	-

Table S3 Natural transition orbital (NTO) analyses (A) for 2 and (B) for 3 at the structure determined by	y
X-ray crystallography	

	λ_{cal} /	f	NTO pairs	Generation	Main
	eV		Isovalue $= 0.035$	probability	Character
	(nm)		Hole (red and blue)	(%)	
			Electron (cyan and orange)		
T ₂	3.296 (376)	0.0002		99.8	ILCT (LMMCT, LL'CT)
S ₁	3.226 (384)	0.0220		99.0	ILCT (MC, MLCT)
T ₁	3.116 (398)	0.0005		99.8	ILCT (MC, MLCT)

	λ_{cal} /	f	NTO pairs	Generation	Main
	eV		Isovalue $= 0.035$	probability	Character
	(nm)		Hole (red and blue)	(%)	
			Electron (cyan and orange)		
T ₂	3.194 (388)	0.0004		99.9	ILCT (LMMCT, LL'CT)
S ₁	3.183 (390)	0.0132		99.2	ILCT (MC, MLCT)
T ₁	3.105 (399)	0.0004		99.8	ILCT (MC, LL'CT, LMMCT)

Table S4 Calculated energy differences between the sublevels (M1, M2, and M3) of the T_1 and T_2 states at the crystal structures for **2** (A) and **3** (B).

(A) 2		
T_1	E^a / eV	Singlet and triplet contribution
		/ %
M1	3.10598	$T_1(97.6) + T_4(1.08)$
M2	3.10665	$T_1(98.0) + T_4(1.08)$
M3	3.10665	$T_1(98.2) + S_6(0.36)$

(A)	2	

T ₂	E^a / eV	Singlet and triplet contribution
		/ %
M1	3.28868	$T_2(96.7) + S_2(1.04) + S_8(0.7)$
M2	3.28868	$T_2(97.5) + T_7(1.08) + T_3(0.4)$
M3	3.28891	$T_2(97.3) + S_1(0.52) + S_3(0.30)$

T ₁ E^a / eV		Singlet and triplet contribution	
		/ %	
M1	3.09282	$T_1(97.0) + T_4(1.42)$	
M2	3.09378	$T_1(97.3) + T_4(1.42) + T_3(0.91)$	
M3	3.09466	$T_1(97.6) + S_5(0.48) + S_3(0.22)$	

T ₂ E^a / eV		Singlet and triplet contribution /	
		%	
M1	3.18469	$T_1(96.1) + S_1(1.12)$	
M2	3.18482	$T_1(94.5) + S_1(2.94) + T_3(0.91)$	
M3	3.18491	$T_1(96.8) + S_6(1.05) + S_2(0.56)$	

^aEnergy

Fig. S10 Experimental corrected emission (right) and excitation spectra (left) at 293 K (bold line), and calculated absorption spectra (thin line) and FC singlet and triplet transitions (solid bar) at the optimized S_0 structures. (A) for **2** and (B) for **3**.

(A)						
The X-ray and the optimized structures of 2	Crystal structure	S ₀	S ₁	T ₁		
Au–Au bond distance / Å	2.9841(8)	3.063	2.991	2.762		
Total Bonding Energy / eV	-551.4314	-568.3279	-567.9912	-567.7228		
Excited State Energy / eV	_	_	-565.3606	-565.6523		
Excitation Energy / eV	_	_	2.6306	2.0706		

Table S5 Calculation results (A) for 2 and (B) for 3: the optimized structures and excited state energy

The X-ray and the optimized structures of 3		XX	XX	At the
	Crystal structure	S ₀	S ₁	T ₁
Au–Au bond distance / Å	3.0457(8)	3.101	3.043	2.782
Total Bonding Energy / eV	-616.4976	-634.8326	-634.3502	-634.2131
Excited State Energy / eV	-	-	-632.0046	-632.1523
Excitation Energy / eV	-	_	2.3457	2.0608

	λ_{cal} /	f	NTO pairs	Generation	Main
	eV		Isovalue $= 0.035$	probability	Character
	(nm)		Hole (red and blue)	(%)	
			Electron (cyan and orange)		
T ₂	3.262 (380)	0.0002		99.8	ILCT (LMMCT, LL'CT)
S ₁	3.197 (388)	0.0174		99.7	ILCT (MC, MLCT)
T ₁	3.093 (401)	0.0003		99.7	ILCT (MC, MLCT)

Table S6 Natural transition orbital (NTO) analyses (A) for **2** and (B) for **3** at the optimized S0 structure(A) Complex **2**

	λ_{cal} /	f	NTO pairs	Generation	Main
	eV		Isovalue $= 0.035$	probability	Character
	(nm)		Hole (red and blue)	(%)	
			Electron (cyan and orange)		
T ₂	3.255 (381)	0.0002		99.8	ILCT (LMMCT, LL'CT)
S ₁	3.203 (387)	0.0145		99.4	ILCT (MC, MLCT)
T ₁	3.114 (398)	0.0003		99.7	ILCT (MC, LL'CT, LMMCT)

Table S7 Calculated energy differences between the sublevels (M1, M2, and M3) of the S_0 states for 2 (A) and 3 (B).

(A) 2		
S ₀	E^a / eV	Singlet and triplet contribution /
at T ₁ structure		%
M1	3.084100	$T_1(99.6)$
M2	3.084800	T ₁ (99.6)
M3	3.085490	$T_1(98.5) + S_5(0.24)$

\mathbf{S}_0	E^a / eV	Singlet and triplet contribution /
at T ₂ structure		%
M1	3.255870	T ₂ (98.0)
M2	3.255950	$T_2(97.7) + S_8(0.4) + S_2(0.2)$
M3	3.255990	$T_2(97.7) + S_1(0.6) + S_3(0.3)$

S ₀	E^a / eV	Singlet and triplet contribution /
at T ₁ structure		%
M1	3.105290	T ₁ (98.4)
M2	3.106050	T ₁ (97.4))
M3	3.106570	$T_1(98.4) + S_5(0.25)$

S ₀	E^a / eV	Singlet and triplet contribution /
at T ₂ structure		%
M1	3.249610	T ₁ (99.6)
M2	3.249710	T ₁ (99.7))
M3	3.249790	$T_1(97.3) + S_1(1.0)$

^aEnergy

Table S8 Natural transition orbital (NTO) analyses (A) for **2** and (B) for **3** at the optimized S_1 and T_1 structures.

	λ_{cal} /	f	NTO pairs	Generation	Main
	eV		Isovalue $= 0.035$	probability	Character
	(nm)		Hole (red and blue)	(%)	
			Electron (cyan and orange)		
S ₁	2.598 (477)	0.0036		97.7	ILCT
T ₁	2.071 (599)	0.0001		99.9	MLCT

	λ_{cal} /	f	NTO pairs	Generation	Main
	eV		Isovalue $= 0.035$	probability	Character
	(nm)		Hole (red and blue)	(%)	
			Electron (cyan and orange)		
S ₁	2.346 (528)	0.0010		99.8	ILCT
T ₁	2.061 (602)	0.0001		99.9	MLCT

Table S9 Calculated energy differences between the sublevels (M1, M2, and M3) of the T_1 states for **2** (A) and **3** (B).

()	()					
T ₁	E^a / eV	Singlet and triplet contribution /				
at T ₁ structure		%				
M1	2.06640	T ₁ (99.6)				
M2	2.06650	T ₁ (99.6)				
M3	2.06666	$T_1(99.6) + S_6(0.36)$				

(A) complex 2

(B) complex 3

T ₁	E^a / eV	Singlet and triplet contribution /
at T ₁ structure		%
M1	2.05644	T ₁ (99.6)
M2	2.05656	T ₁ (99.6))
M3	2.05698	$T_1(99.6) + S_{11}(0.1)$

^aEnergy

Table S10 Calculated energy levels, emission energy, and oscillator strength valued of the S_0 , S_1 , and T_1 at each optimized structure for **2** (A) and **3** (B)

(A)				
Structuro		Eporgy / o)/	Emission energy / eV	Oscillator
Siluciale		Ellergy / ev	(nm)	strength, <i>f</i>
Optimized T 1	T ₂	-564.9918	2.7310 (454)	0.0001
	S ₁	-565.5555	2.1673 (572)	0.0082
	T ₁	-565.6522	2.0706 (599)	0.0001
	S ₀	-567.7228	-	-
Optimized S 1	T ₂	-565.2229	2.7683 (474)	0.0001
	S ₁	-565.3928	2.5984 (477)	0.0036
	T ₁	-565.4291	2.5621 (484)	0.0000
	S ₀	-567.9912	-	-
Optimized S ₀	T ₂	-565.0656	3.2619 (380)	0.0001
	S ₁	-565.1024	3.1971 (388)	0.0220
	T ₁	-565.2345	3.0934 (401)	0.0005
	S ₀	-568.3279	-	-

Structuro	Excited state	Eporgy / o)/	Emission energy / eV	Oscillator
Siluciale		Energy / ev	(nm)	strength, <i>f</i>
Optimized T_1	T ₂	-631.5021	2.7110 (457)	0.0000
	S ₁	-632.0606	2.1525 (576)	0.0091
	T ₁	-632.1523	2.0608 (602)	0.0001
	S ₀	-634.2131	-	-
Optimized \mathbf{S}_1	T ₂	-631.6769	2.6733 (464)	0.0001
	S ₁	-632.0045	2.3457 (529)	0.0036
	T ₁	-632.0196	2.3306 (532)	0.0000
	S ₀	-634.3502	-	-
Optimized S₀	T ₂	-631.5772	3.2553 (381)	
	S ₁	-631.6291	3.2034 (387)	
	T ₁	-631.7182	3.1143 (398)	
	So	-634.8326	-	-

Fig. S11 Calculated energy levels of the S_1 , T_1 , and T_2 at each optimized structure for 2

Table S11 C	Beometry data	a of 2 for the	optimized S ₁ state	С	13.658399	8.832663	8.482061
Au	14.834527	13.021895	7.623011	Н	12.718006	9.275483	8.122415
Р	13.879044	14.146937	5.872142	Н	13.828056	9.275822	9.478161
С	13.763516	13.791180	3.158951	С	17.210430	9.133879	7.128278
Н	13.992920	14.855709	3.134768	Н	18.200922	8.769295	7.406794
С	11.143129	14.523456	5.627390	С	14.806320	9.234295	7.581767
Н	11.287912	13.929158	4.723951	С	16.101426	8.803481	7.908366
С	13.635538	13.143675	4.416278	Н	16.238098	8.174731	8.791804
Ν	15.969647	12.188400	9.139456	С	17.046702	9.912063	5.980893
С	13.255802	16.039937	8.482061	Н	17.903774	10.164452	5.354882
Н	14.196194	15.597117	8.122415	С	13.304049	11.745135	1.956066
Н	13.086144	15.596778	9.478161	Н	13.188883	11.202060	1.018273
С	9.703770	15.738721	7.128278	С	14.652297	10.022412	6.416013
Н	8.713278	16.103305	7.406794	С	10.702369	9.311778	4.976149
С	12.107880	15.638305	7.581767	С	10.029797	8.120877	4.573413
C	10.812774	16.069119	7.908366	Н	8.969297	8.189299	4.322135
н	10.676102	16 697869	8 791804	C	12 082823	9 235361	5 306352
C	9 867498	14 960537	5 980893	C	9 901272	10 575565	5.015216
н	9.010426	14.708148	5 354882	н	9 328473	10.646858	4 075701
C C	13 610151	13 127465	1 956066	н	10 557092	11 452581	5.060336
ч	13 725317	13.670540	1.018273	n C	10.337072	8 010358	5 185224
II C	12 261002	14.950199	6.416012	с u	12.754425	7.042228	5.103224
C C	16 211821	15 560822	0.410013	II C	011592	10 502472	6 100225
C	16.211651	16.751722	4.9/0149	U U	0.911303 0.227040	10.393472	6.199233
U U	10.004405	10./31/23	4.373413	п	0.327049	10.546744	0.173220
н	17.944903	16.683301	4.322135	H	9.453380	10.546744	/.154126
C	14.8313//	15.63/239	5.306352	Н	8.212464	9.748198	6.158127
C	17.012928	14.29/035	5.015216	C	10.686125	6.903091	4.469/65
H	17.585727	14.225742	4.075701	H	10.149444	6.010254	4.147844
H	16.357108	13.420019	5.060336	C	12.048128	6.843430	4.771113
С	14.179775	16.862242	5.185224	H	12.593778	5.902435	4.687322
H	13.113716	16.930362	5.402591	C	13.476085	7.316742	8.631370
С	18.002617	14.279128	6.199235	H	13.255585	6.845406	7.663928
Н	18.586351	13.349904	6.175226	Н	12.642917	7.096452	9.311575
Н	17.460820	14.325856	7.154126	Н	14.374778	6.834298	9.037616
Н	18.701736	15.124402	6.158127	Au	12.079673	11.850705	7.623011
С	16.228075	17.969509	4.469765	Ν	10.944553	12.684200	9.139456
Н	16.764756	18.862346	4.147844	С	10.324300	13.239898	9.947278
С	14.866072	18.029170	4.771113	С	9.549029	13.927892 1	0.953729
Н	14.320422	18.970165	4.687322	Н	9.225005	14.902072 1	0.561894
С	16.589900	11.632702	9.947278	Н	10.155777	14.08412	11.856807
С	17.365171	10.944707 1	0.953729	Н	8.662400	13.33342	11.215808
Н	17.689195	9.9705278 1	0.561894				
Н	16.758423	10.78847	11.856807	Table S12 C	eometry data	n of 2 for the	optimized T1 state
Н	18.251800	11.53917	11.215808	Au	14.778770	12.994131	7.737425
С	13.438115	17.555858	8.631370	Р	13.904553	14.154919	5.951288
Н	13.658615	18.027194	7.663928	С	13.782053	13.779489	3.215497
Н	14.271283	17.776148	9.311575	Н	14.025371	14.840572	3.196344
Н	12.539422	18.038302	9.037616	С	11.160818	14.534136	5.575468
Р	13.035156	10.725663	5.872142	Н	11.315260	13.945401	4.671173
С	13.150684	11.081420	3.158951	С	13.631798	13.129363	4.457778
Н	12.921280	10.016891	3.134768	Ν	16.096271	12.275207	9.173478
С	15.771071	10.349144	5.627390	С	13.195998	16.024473	8.499409
Н	15.626288	10.943442	4.723951	Н	14.138633	15.543927	8.195726
С	13.278662	11.728925	4.416278	Н	12.970935	15.618416	9.499502

С	9.685436	15.740633	7.048547	С	14.655035	10.028150	6.398666
Н	8.688306	16.102435	7.305746	С	10.694825	9.334409	4.984819
С	12.075792	15.626228	7.565080	С	10.013848	8.155867	4.562851
С	10.773748	16.058522	7.860421	Н	8.952428	8.233798	4.318103
Н	10.616615	16.673441	8.750015	С	12.078301	9.245788	5.303504
С	9.878755	14.975019	5.897541	С	9.903250	10.603563	5.057862
Н	9.038554	14.731338	5.245771	Н	9.344838	10.714517	4.112998
С	13.619598	13.115215	2.003687	Н	10.562725	11.475393	5.145221
Н	13.743295	13.658945	1.066406	С	12.724447	8.020523	5.156265
С	12.259165	14.844450	6.398666	Н	13.791032	7.942928	5.368525
С	16.219375	15.538191	4.984819	С	8.899983	10.591552	6.229493
С	16.900352	16.716733	4.562851	Н	8.317856	11.522010	6.223350
Н	17.961772	16.638802	4.318103	Н	9.430697	10.519673	7.188092
C	14.835899	15.626812	5,303504	Н	8,199816	9.749321	6.156115
C	17.010950	14 269037	5.057862	C	10 663978	6 937175	4 434455
н	17 569362	14 158083	4 112998	н	10 121513	6.052624	4 099611
н	16 351475	13 397207	5 145221	C	12 027650	6 864676	4 729497
C II	14 180753	16 852077	5.156265	ч	12.565120	5 010007	4.729497
с u	12 122169	16.020672	5.268525	n C	12.505120	7 222707	4.055942 8.607021
II C	19.014217	14.201040	6 220402	U U	13.302243	6 200201	7.620760
U U	10.014217	12 250500	6 2223495	11	13.210220	7 111275	0.225976
п	18.390344	13.350590	0.223330	н	12./01/21	(9150(4	9.323876
п	1/.485505	14.352927	/.188092	н	14.409488	0.813904	8.947920
H	18./14384	15.123279	6.156115	Au	12.135430	11.8/8469	1.13/425
C II	16.250222	17.935425	4.434455	N	10.81/929	12.59/393	9.1/34/8
Н	16./9268/	18.819976	4.099611	C	10.226319	13.201246	9.9/4214
C	14.886550	18.007924	4.729497	C	9.506115	13.957686	10.973848
Н	14.349080	18.952603	4.633942	Н	8.883853	14.716238	10.4/8//1
С	16.687881	11.671354	9.974214	H	10.207710	14.457371	11.657754
С	17.408085	10.914914	10.973848	Н	8.854176	13.291018	11.555858
Н	18.030347	10.156362	10.478771				
Н	16.706490	10.415229	11.657754				
Н	18.060024	11.581582	11.555858	Table S	S13 Geometry da	ta of 2 for the	optimized T ₂ state
С	13.411957	17.539803	8.607921	Au	14.81274784	12.99654590	7.61770456
Н	13.697980	17.972709	7.639769	Р	13.90135635	14.14190492	2 5.84836522
Н	14.212479	17.761325	9.325876	С	13.86317566	13.7654326	7 3.13663119
Н	12.504712	18.056636	8.947920	Н	14.17196423	14.8096855	4 3.11464932
Р	13.009647	10.717681	5.951288	С	11.16479753	14.5066225	0 5.58313846
С	13.132147	11.093111	3.215497	Н	11.31266522	13.9053334	6 4.68481356
Н	12.888829	10.032028	3.196344	С	13.67261049	13.1325330	6 4.39275828
С	15.753382	10.338464	5.575468	Ν	15.98448569	12.1791012	4 9.12965325
Н	15.598940	10.927199	4.671173	С	13.24530697	16.0349799	0 8.45626339
С	13.282402	11.743237	4.457778	Н	14.16779907	15.4954796	4 8.19048235
С	13.718202	8.848127	8.499409	Н	12.99172794	15.6984981	6 9.47592012
Н	12.775567	9.328673	8.195726	С	9.71495026	15.7453438	4 7.06071445
Н	13.943265	9.254184	9.499502	Н	8.72302663	16.1154160	0 7.32651951
С	17.228764	9.131967	7.048547	С	12.11497018	15.63418024	4 7.53681148
Н	18.225894	8.770165	7.305746	С	10.81750607	16.0781652	1 7.84619714
С	14.838408	9.246372	7.565080	Н	10.67848611	16.7122086	4 8.72593673
С	16.140452	8.814078	7.860421	С	9.88694172	14.9523937	5.92290142
Н	16.297585	8.199159	8.750015	Н	9.03485077	14.6978528	5 5.29079537
С	17.035445	9.897581	5.897541	С	13.66777021	13.1118236	3 1.93388404
Н	17.875646	10.141262	5.245771	Н	13.83165596	13.64212957	0.99583384
С	13.294602	11.757385	2.003687	С	12.27781615	14.83698693	6.37674501
Н	13.170905	11.213655	1.066406	С	16.24417826	15.57875310	5.07366393

C	16.90093434	16.77516598	4.68037816	
H	17.97775222	16.73865156	4.50025278	
C	14.85695692	15.63059271	5.31158332	
C	17.07442072	14.33050709	5.18826550	
Е	17.67400271	14.22828183	4.26890662	
E	16.43060524	13.44298788	5.23743823	
C	14.17067251	16.84126909	5.10601649	
E	13.09006563	16.87527052	5.24778595	
C	18.01725393	14.37091214	6.40424025	
E	18.60401087	13.44377076	6.45374176	
E	17.44710065	14.46844652	7.33913806	
Е	18.71841628	15.21371445	6.34449042	
C	16.21475317	17.97778691	4.49110117	
H	16.75547540	18.87227475	4.17971002	
C	14.84172681	18.01266151	4.69789966	
E	14.27644864	18.93451910	4.55490433	
C	16.63603134	11.66151697	9.93850171	
C	17.44901459	11.0178959	10.94500502	
F	17.75226695	10.02292713	10.58995702	
F	16.87911142	10.91083849	11.87890768	
F	18.34867762	11.61859669	11.14058921	
C	13 52445107	17 54303216	8 48516958	
F	13.87637385	17 89744226	7 50624336	
E	14 29760950	17 77635303	9 22892581	
E	12 62460271	18 11851783	8 74206531	
Р	13 01284365	10 73069508	5 84836522	
Ċ	13.05102434	11 10716733	3 13663119	
F	12 74223577	10.0629144	3 11464932	
C	15 74940247	10.36597750	5 58313846	
F	15 60153478	10.96726654	4 68481356	
C	13 24158951	11 74006694	4 39275828	
C	13.66889303	8.83762010	8.45626339	
F	12.74640093	9.37712036	8.19048235	
E	13 92247206	9 17410184	9 47592012	
C	17 19924974	9 12725616	7 06071445	
F	18 19117337	8 75718400	7 32651951	
C	14 79922982	9 23841976	7 53681148	
C	16 09669393	8 79443479	7 84619714	
F	16 23571389	8 16039136	8 72593673	
C	17 02725828	9 92020623	5 92290142	
F	17 87934923	10 17474715	5 29079537	
C	13 24642979	11 76077637	1 93388404	
F	13.08254404	11 23047043	0.99583384	
C	14 63638385	10.03561307	6 37674501	
c	10 67002174	9 29384690	5 07366393	
c	10.01326566	8 09743402	4 68037816	
F	8 93644778	8 13394844	4 50025278	
с С	12.05724308	9.24200729	5.31158332	
C	9 83977928	10.54209291	5.18826550	
F	9 24019720	10.64431817	4.26890662	
F	10.48359476	11.42961212	5.23743823	
с С	12.74352749	8.03133091	5,10601649	
F	13 82413437	7,99737948	5.24778595	
г. С	8 89694607	10 50168786	6 40424025	
Ċ	0.07074007	10.20100/00	0.10121025	

Н	8.31018913	11.42882924	6.45374176
Η	9.46709935	10.40415348	7.33913806
Η	8.19578372	9.65888555	6.34449042
С	10.69944683	6.89481309	4.49110117
Η	10.15872460	6.00032525	4.17971002
С	12.07247319	6.85993849	4.69789966
Η	12.63775136	5.93808090	4.55490433
С	13.38974893	7.32956784	8.48516958
Η	13.03782615	6.97515774	7.50624336
Η	12.61659050	7.09624697	9.22892581
Η	14.28959729	6.75408217	8.74206531
Au	12.10145216	11.87605410	7.61770456
Ν	10.92971431	12.69349876	9.12965325
С	10.27816866	13.21108303	9.93850171
С	9.46518541	13.85470402	10.94500502
Н	9.16193305	14.84967287	10.58995702
Н	10.03508858	13.96176151	11.87890768
Н	8.56552238	13.25400331	11.14058921

Table S14	Geometry data	a of 3 for the	optimized S1 state
	10 (500 50	6 555100	(

Au	19.672359	6.575192	6.277153
Р	20.719676	7.628045	4.542535
Ν	18.529591	5.758472	7.784393
С	21.377624	8.925803	8.513959
С	23.444960	7.981090	4.336770
С	21.310740	9.595586	7.131671
С	18.371392	9.043126	3.582622
С	20.917715	7.266509	1.836972
С	23.774463	9.565490	6.593891
С	24.886653	9.192027	5.837759
С	20.366958	10.357462	3.877981
С	19.755521	9.124446	3.955568
С	21.041478	6.579232	0.648057
С	22.475037	9.159674	6.254472
С	24.724047	8.394603	4.703549
С	20.923817	6.618959	3.107310
С	22.322472	8.353137	5.100522
С	17.105842	7.469804	2.113338
С	17.670780	10.249968	3.199629
С	19.656766	11.538230	3.481051
С	18.297421	11.476822	3.150738
С	17.606624	7.765182	3.547283
С	17.135681	4.421399	9.529154
С	16.431119	7.814874	4.553956
С	21.224399	11.122837	7.272330
С	17.906912	5.157057	8.555538
Р	21.423187	4.163600	4.580796
С	20.836266	2.901734	8.570221
С	18.665885	3.878666	4.450934
С	20.865595	2.246673	7.179604
С	23.751220	2.804216	3.715642
С	21.271325	4.507834	1.883331
С	18.388538	2.286686	6.705345

С	17 257310	2 661713	5 978351	Н	20 635149	1 414092	4 103330
C C	21 700898	1 475266	3 882705	н	21.287887	4 602781	-0 258200
C C	22.76545	2 698526	4 035087	н	16 519200	3 738301	4 252457
C C	22.370343	5 166025	0.670276	н ц	25 754641	3 812330	1.008312
C C	10 680052	2 605273	6 338514	и и	25.754041	5 506582	2 483125
C C	17 303048	2.095275	4 844006	н ц	23.300800	J.500582	2.463125
C C	21 172472	5 174092	2 122660	п п	24.212095	1 604426	2 024267
C	10 206275	2 507075	5.152009	11	23.406555	0.500169	2 200024
C C	25.041100	<i>4 540020</i>	2 400010	н ц	21.030727	0.454181	2 706840
C C	23.041190	4.540059	2.409910	п	24.281010	-0.434181	2.790849
C C	24.400433	1.042429	3.281/15	п	25.858889	4.893314	4.133/31
C	22.3/3391	0.342218	3.434307	п	25.282508	3.750222	5.815295
C	23.738288	0.420820	3.142902	п	20.1/0251	4.996091	4.904186
C	24.531370	4.105892	3./91/49	Н	26.418553	3.276908	4.534987
C	25.666662	4.025029	4.822172	Н	21.852792	0.434890	7.858269
C	20.951627	0.717774	7.297285	Н	21.003591	0.241141	6.310/34
Au	22.433710	5.287733	6.308588	H	20.085106	0.303548	7.831983
N	23.631671	6.091406	7.803748	H	26.282589	7.262394	9.035593
С	25.298548	7.136936	9.508587	Н	25.401469	6.475474	10.380181
С	24.373788	6.558701	8.561467	Н	24.928864	8.116871	9.841158
Н	21.390178	7.830935	8.424364				
Н	20.509505	9.214383	9.122448	Table S15 (Beometry data	a of 3 for the	optimized T ₁ state
Н	22.282612	9.238473	9.055184	Au	19.835980	6.527227	6.210141
Н	23.302282	7.358556	3.452108	Р	20.778902	7.658883	4.427638
Н	20.376925	9.251109	6.657504	Ν	18.597202	5.770669	7.744410
Н	20.814082	8.350246	1.791492	С	21.497765	8.963554	8.423432
Н	23.918922	10.204550	7.467747	С	23.511191	7.905671	4.214852
Н	25.880813	9.537859	6.126979	С	21.421616	9.580113	7.017078
Н	21.427675	10.448109	4.114142	С	18.330406	8.964467	3.843971
Н	21.024263	7.120569	-0.297530	С	20.673901	7.250093	1.746532
Н	25.585288	8.102905	4.100986	С	23.881032	9.496753	6.464907
Н	16.400088	8.228117	1.748231	С	24.981243	9.097531	5.704922
Н	16.578139	6.507175	2.131008	С	20.383895	10.310833	3.762409
Н	17.945176	7.393182	1.412364	С	19.733077	9.085775	4.011356
Н	16.616598	10.167594	2.936002	С	20.867648	6.592546	0.550189
Н	20.192875	12.487472	3.435577	С	22.571999	9.111493	6.138149
Н	17.755119	12.374680	2.855014	С	24.798885	8.297953	4.573746
Н	18.271547	6.948182	3.845633	С	20.877367	6.618025	3.007129
Н	16.133014	4.215018	9.129839	С	22.402430	8.303251	4.986414
Н	17.043499	5.008447	10.453613	С	16.996028	7.118215	2.761738
Н	17.638047	3.469811	9.751931	С	17.630965	10.102076	3.417158
Н	16.791820	7.996646	5.574693	С	19.661287	11.418340	3.333230
Н	15.928369	6.839269	4.530700	С	18.276572	11.312691	3.168783
Н	15.688462	8.582083	4.298204	С	17.559768	7.676889	4.073760
Н	20.326618	11.403191	7.840004	С	16.896841	4.690494	9.391340
Н	21.183297	11.626467	6.296613	С	16.473418	7.834385	5.146852
Н	22.093128	11.527338	7.809766	С	21.348250	11.112333	7.098109
Н	20.810400	3.998628	8.496624	С	17.836609	5.289579	8.474469
Н	21.728143	2.616177	9.144820	Р	21.390127	4.169024	4.428457
Н	19.957051	2.568288	9.142134	С	20.670690	2.861804	8.423409
Н	18.796989	4.474808	3.545847	С	18.657389	3.927105	4.216166
Н	21.786416	2.583831	6.678122	С	20.744910	2.246727	7.016308
Н	21.431218	3.429361	1.882211	С	23.836672	2.859032	3.845079
Н	18.268498	1.629839	7.569893	С	21.496642	4.576700	1.747181
Н	16.271874	2.302929	6.281818	С	18.285347	2.335436	6.465442

С	17.185610	2.737255	5.706125	Н	20.699227	1.447167	3.881156
С	21.780960	1.515949	3.766044	Н	21.473507	4.707804	-0.388392
С	22.433870	2.740249	4.013268	Н	16.516986	3.831912	3.961353
С	21.303332	5.233796	0.550518	Н	25.895477	4.001374	2.314285
С	19.594976	2.718533	6.138517	Н	25.701640	5.647668	2.940225
С	17.369071	3.537136	4.575331	Н	24.376089	4.878216	2.025525
С	21.292907	5.209309	3.007449	Н	25.614424	1.780459	3.278535
С	19.765628	3.527176	4.987251	Н	21.985931	-0.530714	3.125894
С	25.173346	4.701219	2.758919	Н	24.464754	-0.357133	2.849692
С	24.534030	1.719738	3.419340	Н	23.891477	4.904843	4.454208
С	22.501549	0.406698	3.337973	Н	25.279698	3.600373	6.085488
С	23.886346	0.509867	3.172775	Н	26.170217	4.959473	5.345611
С	24.609675	4.145636	4.072274	Н	26.485142	3.296809	4.817509
С	25.696536	3.988033	5.144821	Н	21.691212	0.407711	7.683419
С	20.815440	0.714276	7.095424	н	20.898625	0.261765	6.099693
Au	22.333710	5.301184	6.210281	н	19.924711	0.296137	7.585116
N	23.571505	6.057216	7.745468	Н	26.236959	7.277362	8.896462
C	25.268947	7.134860	9.397044	н	25.405773	6.480333	10.269341
C	24 330802	6 536998	8 477716	н	24 886721	8 109552	9 731616
н	21.350002	7 865000	8 384808		21.000721	0.109552	5.751010
н	20.641025	9 291658	9.027814				
н	22.041023	9 285553	8 945494	Table S	16 Geometry da	ta of 3 for the	optimized T ₂ state
н	22.411012	7 300579	3 321470	Au	19.93615018	5.87846956	6.80698795
н ц	20.470583	0.235550	6 560245	Р	21.34709280	7.69207304	6.62687596
н ц	20.479303	9.235550 8.206487	1 728255	Ν	18.28865294	4.70512805	7.27483171
п п	20.309138	10 146227	7 228255	С	22.03328171	4.87009019	9.64630422
н ц	24.040657	0 /22821	5 001010	Н	21.76081231	4.36862720	8.70704984
п	23.962570	9.452651	2 976692	Н	21.21981791	4.71935642	10.36923760
п	21.405590	10.381433	3.8/0083	Н	22.93398150	4.38938034	10.05670435
п	20.097729	/.110101	-0.3889/9	С	24.08759979	7.40914815	6.16618537
п	25.051298	8.005255	3.959244	Н	23.86769437	7.89536144	5.21536760
п	10.2/2380	/.810099	2.310479	С	22.27398324	6.37205667	9.42148334
н	16.469474	6.1/11/3	2.945020	Н	21.32258805	6.79918991	9.06197887
н	17.793027	6.941313	2.028044	С	19.67323937	9.76294103	7.67722091
Н	16.550594	10.039432	3.277024	С	21.70403092	9.76213611	4.83289053
Н	20.175270	12.356311	3.119652	Н	21.86752700	10.33683944	5.74329653
Н	17.696611	12.178339	2.844859	С	24.65115395	6.20190458	8.60040487
Н	18.279527	6.919560	4.456381	Н	24.89094118	5.74570696	9.56328736
Н	15.928593	4.552213	8.890031	С	25.66956383	6.38300491	7.66460458
H	16.761419	5.342072	10.266061	Н	26.68714209	6.06536131	7.89917654
H	17.276629	3.713623	9.722288	С	21.97391130	9.75320265	8.45389500
H	16.890288	8.224265	6.086590	Н	22.98450557	9.34434218	8.42421154
Н	16.001554	6.862457	5.349550	С	20.97894323	9.19415559	7.65565287
Н	15.683386	8.523731	4.819021	С	21.75081605	10.42797449	3.61129667
Н	20.472252	11.416523	7.687001	н	21.94814811	11.50048120	3.58506814
Н	21.263619	11.565927	6.102999	С	23.33040239	6.60523183	8.35231151
Н	22.238483	11.531546	7.587784	C	25.38856937	6.99177211	6.44055362
Н	20.678715	3.960387	8.386051	н	26.18062927	7.15465516	5,70807505
Н	21.527164	2.531416	9.026925	C	21 45730763	8 37657299	4 92841265
Н	19.757160	2.540896	8.945643	c	23.05648287	7.21671154	7.10416849
Н	18.820929	4.532543	3.323166	c	18 07932572	10 38306772	5 83163503
Н	21.687350	2.590033	6.559354	н	17 65444540	11 24336020	6 36825561
Н	21.801298	3.530267	1.729404	н	17 20372186	0 08005811	5 17790788
Н	18.124654	1.685580	7.328362	н	18 00/2/020	10 7/2/20544	5 202620/1
Н	16.183752	2.403659	5.983164	C C	10.20724220	10.77342034	8 55632057
				C	17.42341/33	10.05500741	0.33032237

Н	18.42082940	11.28513769	8.58191012
С	21.70279918	10.84742767	9.30860126
Н	22.50291733	11.25539047	9.92833548
С	20.41717042	11.39354487	9.36084664
н	20 20011156	12 23498332	10.01962285
C	18 55274887	9 27850477	6 79610390
н	18 93024689	8 44725252	6 18364780
II C	16.45212026	2 85126202	7 25414408
U U	15.46041705	2.83130302	7.15511599
11	16.44220182	2 28957105	25111026
Н	16.44220183	2.3885/195	8.35111036
Н	16.66800019	2.07639891	6.60382556
С	17.38769151	8.72852320	7.64199067
H	17.72397899	7.90971533	8.29193814
Н	16.60892616	8.33929959	6.97173202
Η	16.93319872	9.50752474	8.26919355
С	22.62164908	7.07415847	10.74275613
Н	21.80957115	6.93492909	11.46949356
Н	22.77404483	8.15291049	10.60548917
Н	23.53850600	6.66184755	11.18716813
С	17.46132398	3.88525539	7.30895407
Р	21.05467800	5.82051843	3.59853885
С	19.46516710	2.10714292	4.69050356
Н	19.74255061	2.68695198	5.58209727
Н	20.14169319	1.24498083	4.61259382
Н	18.44533023	1.71636815	4.82476246
С	18.38764833	6.64615690	3.70892031
Н	18.81253249	7.65008367	3.72717998
C	19 55331486	2 96957153	3 42043935
н	20 60649510	3 28069697	3 31674839
n C	20.0004/010	5.41506841	1 51110005
C	22.90930713	8 22021772	2 40715200
U U	21.310/19/3	7 70502022	2.49/13399
п	21.13770083	1.79302022	1.30/418/1
U U	17.30623899	4.09204564	3.02933138
Н	16.86642175	3.093/6/60	3.5/692459
С	16.46441192	5.19709355	3.75506175
Н	15.38329349	5.05505334	3.80421401
С	20.63791269	5.15549758	0.88460071
Н	19.57692600	5.20833185	1.13110196
С	21.58858078	5.45090268	1.85856459
С	21.53899045	9.71199947	2.43212169
Η	21.55011748	10.21482224	1.46420552
С	18.70086108	4.22258675	3.54830311
С	17.00641187	6.48264822	3.79520754
Н	16.35698961	7.35554840	3.87706611
С	21.28520233	7.63679546	3.71993825
С	19.23942047	5.53205949	3.59329131
С	24.84526720	7.02729020	1.96656838
Н	25.36269401	6.82652076	1.01846335
Н	25.60778781	7.30045308	2.70920264
Н	24.17826907	7.88707749	1.82044930
С	23.32681592	5.02659237	0.18814092
Н	24.38455834	4.9883853	-0.07632391
C	21.01897505	4.78496710	-0.42621852
н	20.24888146	4.55019728	-1.16281165

С	22.37248142	4.71462362	-0.76889499
Н	22.67361834	4.42646766	-1.77655020
С	24.06661418	5.79528053	2.46980997
Н	23.60610472	6.06686272	3.43041440
С	25.00546783	4.60267650	2.73574338
Н	24.44984851	3.74514826	3.13812366
Н	25.76361891	4.89943264	3.47356734
Н	25.52981725	4.28245859	1.82511776
С	19.19370152	2.14638802	2.17436060
Н	19.86956903	1.28511650	2.08281495
Н	19.27297603	2.74021007	1.25414016
Н	18.16734204	1.75741993	2.23265603
Au	22.04102173	4.63304896	5.31060684
N	23.34334556	3.39512408	6.34944778
С	24.74589518	2.17191165	8.18036346
Н	25.82081556	2.32337511	8.00854086
Н	24.53208964	1.09420204	8.14671030
Н	24.48058270	2.55667442	9.17623371
С	23.97789596	2.85106295	7.16140134

References

- M. Hoshino, H. Sonoki, Y. Miyazaki, Y. Iimura and K. Yamamoto, *Inorg. Chem.*, 2000, 39, 4850-4857.
- S2. M. Osawa, I. Kawata, S. Igawa, M. Hoshino, T. Fukunaga and D. Hashizume, *Chem. Eur. J.*, 2010, 12114-12126.
- S3. Rigaku Oxford Diffraction, CrysAlisPro, Rigaku Corporation, Tokyo, Japan. 2015.
- S4. G. M. Sheldrich, Acta Cryst. 2015, A71, 3.
- S5. G. M. Sheldrich, Acta Cryst. 2015, C71, 3.
- S6. (a) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1996, 77, 3865-3868; (b) J. P. Perdew,
 K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1997, 78, 1396-.
- S7. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
- S8. D. P. Chong, *Molecular Physics* 2005, **103**, 749-761.
- S9. ADF2019.303 SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com
- S10. (a) E. Van Lenthe, E. J. Baerends, J. Comput. Chem. 2003, 24, 1142-1156; (b) E. van Lenthe, E. J. Baerends, and J. G. Snijders J. Chem. Phys. 1993, 99, 4597-4610; (c) E. van Lenthe, E. J. Baerends, and J. G. Snijders J. Chem. Phys. 1994, 101, 9783-9792; (d) E. van Lenthe, E. J. Baerends, and J. G. Snijders J. Chem. Phys. 1999, 110, 8943-8952; (e) S. J. A. van Gisbergen, J. G. Snijders and E. J. Baerends, Comput. Phys. Commun. 1999, 118, 119-139; (f) F. Wang and T. Ziegler J. Chem. Phys. 2005, 123, 154102-12.
- S11. R. G. Parr and W. Yang, Density-functional Theory of Atoms and Molecule; Oxford University Press: Oxford, U. K., 1994.
- S12. (a) R. L. Martin, J. Chem. Phys., 2003, 118, 4775-4777; (b) E. R. Batista and R. L.; Martin, J. Phys. Chem. A, 2005, 109, 3128-3133; (c) E. R. Batista and R. L. Martin, J. Phys. Chem. A, 2005, 109, 9856-9859; (d) L.E. Roy, G. Scalmani, R. Kobayashi and E.R. Batista, Dalton Trans., 2009, 6719-6721.