Supporting Information

Slow Magnetic Relaxation in a Homoaxially Phosphine oxide Coordinated Pentagonal Bipyramidal Dy(III) Complex

Pankaj Kalita,^a Naushad Ahmed,^{a \perp} Shruti Moorthy,^{b \perp} Viginie Béreau,^{c,d} Arun Kumar Bar,^e Pawan Kumar,^f Prakash Nayak,^g Jean-Pascal Sutter^{*c} Saurabh Kumar Singh^{*b} and Vadapalli Chandrasekhar^{* a, f}

^a Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046. Email: <u>vc@tifr.res.in</u>; <u>vc@iitk.ac.in</u>

^b Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502284, Kandi, Sangareddy, Telangana, India. Email: <u>sksingh@chy.iith.ac.in</u>

^c Laboratoire de Chimie de Coordination du CNRS, Université de Toulouse, CNRS, Toulouse, France. Email: jean-pascal.sutter@lcc-toulouse.fr

^d Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, , F-81104 Castres, France

^e Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 501507, India

^f Department of Chemistry, IIT Kanpur, Kanpur 208016, India

^g School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India

[⊥]Authors contributed equally

Figure S1. Illustration of intermolecular distances in 1-Dy.

Figure S2. Solid state packing diagram of 1-Dy viewed along the crystallographic *b* axis.

Table S1. Continuous Shape analysis

	Structure [!]							
Complex	HP-7	HPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7	JETPY-7	Ref
[(L)Dy(Cy	31.572	20.654	1.396	8.067	6.207	6.487	4.108	This
₃ PO) ₂] ⁺								work
[(L)Dy(Cy			1.446		•	1	L	[1]
₃ PO)Cl]								
[(L)Dy(Ph			1.505					[1]
₃ PO)Cl]								
(L')DyCl ₂			1.210					[2]

¹HP-7: Heptagon (D_{7h}); HPY-7: Hexagonal pyramid (C_{6v}); PBPY-7: Pentagonal bipyramid (D_{5h}); COC-7: Capped octahedron (C_{3v}); CTPR-7: Capped trigonal prism (C_{2v}); JPBPY-7: Johnson pentagonal bipyramid J13 (D_{5h}); JETPY-7: Johnson elongated triangular pyramid J7 (C_{3v})

Bond lengths (Å)			Bon	d angles (°)	
		O1–Dy1–O3	93.17(10)	O1–Dy1–O4	90.55(10)
Dy1–O1	2.241(3)	O1–Dy1–N2	89.88(11)	O1–Dy1–N3	85.95(11)
Dy1–O2	2.222(3)	O1–Dy1–N4	86.28(11)	O2–Dy1–O1	175.33(10)
Dy1–O3	2.282(3)	O2–Dy1–O3	88.74(11)	O2–Dy1–O4	93.28(11)
Dy1–O4	2.262(3)	O2–Dy1–N2	87.06(12)	O2-Dy1-N3	89.56(12)
Dy1–N2	2.444(3)	O2–Dy1–N4	92.92(11)	O3–Dy1–N2	65.11(11)
Dy1–N3	2.467(3)	O3–Dy1–N3	129.81(11)	O3–Dy1–N4	165.84(11)
Dy1–N4	2.466(3)	O4–Dy1–O3	100.74(9)	O4–Dy1–N2	165.84(11)
		O4–Dy1–N3	129.43(11)	O4–Dy1–N4	65.14(10)
		N2–Dy1–N3	64.71(12)	N2-Dy1-N4	129.00(12)
		N4–Dy1–N3	64.30(12)		

 Table S2. Bond angle and distance parameters of 1-Dy

Figure S3. Experimental powder XRD pattern and simulated powder XRD from single crystal data for **1-Dy** along with experimental pattern of **1-Y(Dy)**.

Figure S4. Magnetic behavior for **1-Dy**: (a) M = f(H) for T = 2, 3, 4, and 6 K (full lines are eye guides); (b) M = f(H) at 2 K for **1-Dy** and **1-Y(Dy)**; (c) χ_M ' and χ_M '' = f(T) for AC frequency of 1 kOe in absence and with applied static filed (2 kOe); (c) DC field dependence of the relaxation time (τ) at 5 K.

Figure S5. AC susceptibility behaviors for 1-Dy recorded with $H_{DC} = 750$ Oe

Figure S6. 1-Dy: Cole-Cole plot; (a, b) solid lines are the best-fits of the assessments of the distribution width (α) of the relaxation time for the different temperatures; (c) normalized plot (the lines are just eye-guides). (*Below*) the α values for the temperatures between 4.0 and 16.0 K.

(c)

Т (К)	α	Т (К)	α	Т (К)	α
4.0	0.089	7.6	0.037	11.2	0.012
4.2	0.079	7.8	0.029	11.4	0.066
4.4	0.078	8.0	0.025	11.6	0.016
4.6	0.072	8.2	0.027	11.8	0.021
4.8	0.063	8.4	0.026	12.0	0.016
5.0	0.054	8.6	0.040	12.2	0.043
5.2	0.055	8.8	0.042	12.4	0.050
5.4	0.054	9.0	0.019	12.6	0.012
5.6	0.053	9.2	0.043	12.8	0.016
5.8	0.050	9.4	0.045	13.0	0.012
6.0	0.046	9.6	0.018	13.2	0.013
6.2	0.043	9.8	0.018	13.4	0.038
6.4	0.041	10.0	0.014	13.6	0.038
6.6	0.038	10.2	0.049	13.8	0.072
6.8	0.039	10.4	0.014	14.0	0.037
7.0	0.043	10.6	0.019		
7.2	0.035	10.8	0.012		
7.4	0.032	11.0	0.012		

Т (К)	XT	Xs	Tau (s)	alpha
3.8	3.39	0.71	0.144	0.075
4.0	3.33	0.77	0.105	0.079
4.2	3.38	0.72	0.0778	0.054
4.4	3.32	0.78	0.0586	0.054
4.6	3.26	0.83	0.0447	0.053
4.8	3.21	0.88	0.0346	0.051
5.0	3.17	0.93	0.02723	0.050
5.2	3.13	0.97	0.02170	0.049
5.4	3.08	1.02	0.01747	0.047
5.6	3.05	1.05	0.01425	0.046
5.8	3.01	1.09	0.01174	0.045
6.0	2.92	1.17	0.00980	0.066
6.2	2.95	1.15	0.00824	0.042
6.4	2.92	1.17	0.00701	0.040
6.6	2.90	1.20	0.00598	0.039
6.8	2.87	1.22	0.00515	0.039
7.0	2.85	1.25	0.00446	0.038
7.2	2.83	1.27	0.00388	0.037
7.4	2.81	1.29	0.00341	0.036
7.6	2.76	1.34	0.00300	0.052
7.8	2.74	1.36	0.002657	0.051
8.0	2.72	1.38	0.002360	0.051
8.2	2.70	1.39	0.002101	0.050
8.4	2.69	1.40	0.001881	0.048
8.6	2.68	1.42	0.001688	0.047
8.8	2.66	1.43	0.001520	0.046
9.0	2.65	1.45	0.001374	0.046
9.2	2.64	1.46	0.001249	0.043
9.4	2.63	1.47	0.001131	0.044
9.6	2.62	1.48	0.001032	0.042
9.8	2.61	1.49	0.000944	0.042
10.0	2.60	1.50	0.000865	0.038
10.2	2.59	1.51	0.00079506	0.038
10.4	2.58	1.52	0.000731	0.038
10.6	2.57	1.53	0.000676	0.037
10.8	2.56	1.54	0.000622	0.035
11.0	2.55	1.55	0.0005773	0.034
11.2	2.54	1.55	0.000537	0.032
11.4	2.54	1.56	0.000499	0.030
11.6	2.54	1.56	0.000465	0.019
11.8	2.52	1.58	0.000434	0.028
12.0	2.50	1.58	0.000396	0.030
12.2	2.50	1.59	0.0003715	0.029
12.4	2.50	1.60	0.000349	0.022
12.6	2.49	1.60	0.0003270	0.025
12.8	2.49	1.61	0.0003067	0.025
13.0	2.48	1.62	0.000288	0.025
13.2	2.48	1.62	0.0002697	0.026
13.4	2.47	1.63	0.0002553	0.022
13.6	2.46	1.63	0.0002408	0.022

Table S3: best-fit parameters for the analysis of χ_M '' = *f*(frq) by the extended Debye model.

13.8	2.46	1.64	0.0002284	0.0187
14.0	2.45	1.64	0.00021390	0.022
14.2	2.45	1.65	0.0002019	0.017
14.4	2.44	1.66	0.0001896	0.018
14.6	2.44	1.66	0.00017956	0.013
14.8	2.43	1.66	0.0001683	0.017
15.0	2.43	1.67	0.0001583	0.019
15.2	2.42	1.67	0.0001513	0.011
15.4	2.42	1.68	0.0001416	0.014
15.6	2.41	1.68	0.0001334	0.013
15.8	2.41	1.68	0.0001241	0.015
16.0	2.40	1.69	0.0001198	0.009
16.2	2.40	1.70	0.0001110	0.012
16.4	2.40	1.70	0.0001051	0.011
16.6	2.39	1.71	9.85.10 ⁻⁵	0.015
16.8	2.39	1.70	9.05 10 ⁻⁵	0.011
17.0	2.38	1.71	8.78 10 ⁻⁵	0.007

Figure S7. 1-Y(Dy): (a) χ_M '' = f(T) in zero field (test frequency: 997 Hz, H_{AC} = 3 Oe); (b) $\tau = f(H)$ at 5 K.

T (K)

v (Hz)

Figure S8. 1-Y(Dy): The temperature and frequency dependencies of χ_M ' and χ_M ''

Figure S9. 1-Y(Dy): Cole-Cole plots and best-fit parameters.

The relation time distribution width given by parameter α is small suggesting a single or main relaxation process. This is consistent with the observation made for the bulk complex. It can be noticed that from 12 K and above α become larger which could be related to the noise of the data for larger T due to a weaker signal for χ_M ".

Т (К)	X _T	Xs	alpha	R ²
3.5	2.91(9)	0.241(2)	0.077(9)	0.999
4.0	2.61(9)	0.190(3)	0.09(1)	0.995
4.5	2.21(2)	0.165(3)	0.069(8)	0.995
5.0	1.89(3)	0.140(5)	0.08(2)	0.959
5.5	1.78(1)	0.125(5)	0.06(1)	0.979
6.0	1.620(4)	0.103(3)	0.050(7)	0.993
6.5	1.492(3)	0.087(3)	0.051(8)	0.988
7.0	1.389(4)	0.060(3)	0.08(1)	0.972
7.5	1.299(3)	0.036(4)	0.09(1)	0.968
8.0	1.212(2)	0.041(5)	0.07(1)	0.968
8.5	1.132(1)	0.034(3)	0.039(7)	0.988
9.5	1.019(4)	0.007(7)	0.06(1)	0.986
10	0.959(1)	-0.009(8)	0.08(1)	0.971
10.5	0.909(2)	-0.03(1)	0.08(2)	0.970
11.0	0.866(1)	-0.02(1)	0.06(1)	0.972
11.5	0.826(1)	-0.02(2)	0.05(2)	0.955
12.0	0.85(1)	-0.11(3)	0.17(4)	0.925
12.5	0.755(2)	-0.15(3)	0.14(2)	0.976
13.0	0.725(2)	-0.09(3)	0.11(2)	0.967
13.5	0.709(5)	-0.19(8)	0.19(6)	0.885

Table S4. 1-Y(Dy): best-fit parameters for the analysis of χ_M '' = *f*(frq) by the extended Debye

model

Т (К)	X _T	Xs	Tau (s)	alpha	R ²
4.0	3.69	1.30	0.12(1)	0.10(3)	0.984
4.5	3.52	1.48	0.053(2)	0.07(2)	0.990
5.0	3.40	1.60	0.0285(7)	0.05(2)	0.988
5.5	3.33	1.67	0.0165(5)	0.06(2)	0.979
6.0	3.26	1.73	0.0102(2)	0.06(2)	0.983
6.5	3.23	1.77	0.0637(2)	0.07(1)	0.995
7.0	3.15	1.84	0.0046(2)	0.08(2)	0.970
7.5	3.13	1.87	0.003208(6)	0.07(1)	0.985
8.0	3.09	1.91	0.00231(5)	0.08(1)	0.988
8.5	3.07	1.93	0.00167(4)	0.07(1)	0.989
9.0	3.04	1.96	0.00129(2)	0.07(1)	0.993
9.5	3.01	1.99	0.00102(2)	0.066(9)	0.995
10	2.97	2.02	0.00082(2)	0.05(1)	0.994
10.5	2.95	2.05	0.00060(3)	0.04(3)	0.957
11.0	2.95	2.05	0.00052(1)	0.07(1)	0.992
11.5	2.93	2.07	0.000448(8)	0.063(1)	0.995
12.0	2.91	2.08	0.000359(5)	0.049(8)	0.998
12.5	2.91	2.09	0.000295(3)	0.06(1)	0.995
13.0	2.89	2.11	0.000245(1)	0.05(1)	0.996
13.5	2.87	2.13	0.000226(4)	0.02(1)	0.997
14.0	2.87	2.13	0.000183(2)	0.051(9)	0.997
14.5	2.85	2.15	0.000165(9)	0.04(3)	0.992
15.0	2.83	2.17	0.000139(8)	0.0016(25)	0.993
15.5	2.86	2.14	0.000111(7)	0.07(2)	0.996
16.0	2.81	2.19	0.000103(5)	0.03(1)	0.998
16.5	2.83	2.17	0.00008(2)	0.05(6)	0.973

	Avg. axial bond lengths	Avg. equatorial bond lengths	Avg. axial/Avg. equatorial
1-Dy	2.231	2.384	0.936
2-Dy	2.644	2.373	1.114
3-Dy	2.431	2.381	1.021
4-Dy	2.449	2.389	1.025

Table S5. Average axial and equatorial bond lengths of the hydrogen-optimised structures of complexes **1-Dy** to **4-Dy**.

Table S6. CASSCF computed average Mulliken charges on axial and equatorial ligand with the ratio of Avg. axial/Av. equatorial for complexes **1-Dy** to **4-Dy**.

	Avg. axial charges	Avg. equatorial charges	Avg. axial/Avg. equatorial
1-Dy	-0.68	-0.46	1.49
2-Dy	-0.64	-0.40	1.60
3-Dy	-0.65	-0.43	1.51
4-Dy	-0.65	-0.44	1.48

Table S7. SA-CASSCF computed g-tensors, and the angle of deviation from ground state g_{zz} orientation.

1-Dy (CASSCF)

KD	Energy(cm ⁻¹)	g _{xx}	g _{yy}	g _{zz}	angle(θ)
1	0.00	0.0188	0.0458	19.6246	0.0
2	198.68	0.8490	1.9219	13.8939	84.5
3	223.33	0.1202	1.6347	17.1980	85.6
4	280.74	0.2725	1.9874	10.9564	98.4
5	411.46	2.1261	3.6089	14.3862	91.6
6	472.47	0.9187	4.5448	11.9883	100.6
7	583.01	1.8480	3.3185	12.8051	139.3
8	746.22	0.2213	0.6051	17.8228	108.6

1-Dy (NEVPT2)

KD	Energy(cm ⁻¹)	g _{xx}	g_{yy}	g _{zz}	angle(θ)
1	0.00	0.0088	0.0230	19.6418	0.0
2	194.87	0.4955	0.9394	15.7256	70.1
3	244.14	0.0014	4.7147	13.9352	94.9
4	284.71	1.1646	1.8235	9.4301	98.3

5	416.31	2.0522	3.0489	14.7338	94.7
6	494.48	0.9301	5.2964	11.1302	96.5
7	605.30	1.7104	3.7895	12.5347	138.9
8	801.31	0.1174	0.3961	17.9771	115.1

2-Dy

KD	Energy(cm ⁻¹)	g _{xx}	g _{yy}	g _{zz}	angle(θ)
1	0.00	0.0031	0.0078	19.6887	0.0
2	148.90	0.3756	0.8604	14.1140	15.0
3	192.83	0.2222	0.4478	12.1927	18.8
4	300.67	1.8118	2.8095	15.3869	97.0
5	361.33	0.1799	5.1511	10.4599	90.6
6	450.07	2.2929	7.8667	9.4345	89.9
7	513.02	2.7867	3.4535	10.6635	10.1
8	624.07	0.2280	0.6332	16.8148	81.9

3-Dy

KD	Energy(cm ⁻¹)	g _{xx}	g _{yy}	g _{zz}	angle(θ)
1	0.00	0.0149	0.0301	19.6617	0.0
2	178.97	0.6810	1.4904	14.4313	13.0
3	233.56	0.9231	2.2326	11.5176	90.9
4	277.55	0.0523	1.3998	14.8883	90.2
5	397.43	1.0544	3.9352	12.2836	97.0
6	459.37	2.6627	6.2009	12.8846	95.5
7	544.24	0.4176	1.2192	12.7401	109.2
8	688.73	0.1467	0.7009	17.4863	94.3

4-Dy

KD	Energy(cm ⁻¹)	g _{xx}	g _{yy}	g _{zz}	angle(θ)
1	0.00	0.0187	0.0366	19.6582	0.0
2	176.84	0.7561	1.9505	14.2340	5.9
3	233.84	0.4796	1.1534	12.0909	21.5
4	309.02	1.0782	1.1817	17.2299	90.9
5	392.36	1.2285	3.9939	12.5905	85.6
6	469.32	2.1355	6.6849	11.3244	88.5
7	552.22	1.2110	2.3757	12.2015	38.3
8	682.11	0.1316	0.8064	17.2490	78.9

KD	Energy(cm ⁻¹)	g _{xx}	g_{yy}	g _{zz}	angle(θ)
1	0.00	0.0060	0.0113	19.7253	0.0
2	170.90	0.4082	0.9808	14.6569	9.4
3	222.56	0.3105	0.5120	12.5881	7.7
4	324.72	1.6795	2.4429	15.6241	84.5
5	385.35	0.1892	5.2974	10.7733	78.5
6	472.26	2.7109	8.4297	9.4364	77.8
7	544.73	1.6203	2.3779	11.8237	9.9
8	675.37	0.0987	0.4886	17.2425	85.9

 Table S8. SINGLE_ANISO computed crystal field parameters for 1-Dy, 2-Dy, 3-Dy, 4-Dy.

q	
$\hat{H} = \nabla \nabla B^{q} O^{q}$	
$m_{CF} = 2 \sum B_k O_k$	
k = -q	and

The CF parameters were computed using the following equation, $B^{q} = O^{q}$

here	\mathbf{D}_{k} and \mathbf{C}	^k are the crysta	l field paramet	ters and Steven's	s operator,	respectively.
------	-----------------------------------	-----------------------------	-----------------	-------------------	-------------	---------------

k	q	B_k^q	B_k^q	B_k^q	B_k^q
		1-Dy	2-Dy	3-Dy	4-Dy
	-2	-5.24E-01	3.88E-01	1.62E-01	9.19E-02
	-1	-3.44E+00	-7.46E-06	-4.87E+00	7.85E-01
2	0	-4.04E+00	-5.80E+00	-2.03E+00	-6.18E+00
	1	-6.62E-01	-4.75E-06	2.02E+00	-1.99E+00
	2	-6.03E-01	-1.15E+00	-1.31E+00	8.15E-03
	-4	4.27E-03	9.43E-02	8.58E-03	2.21E-01
	-3	-3.50E-02	-7.61E-07	4.64E-02	1.66E-02
	-2	-2.83E-03	7.58E-02	-4.67E-03	-2.47E-01
	-1	5.03E-02	-2.14E-07	1.96E-02	4.31E-03
4	0	1.80E-03	-8.81E-03	-1.37E-02	-1.11E-02
	1	-1.78E-03	-1.10E-07	-8.59E-03	1.29E-02
	2	3.69E-02	-2.82E-01	4.90E-03	1.82E-01
	3	3.10E-03	6.77E-08	-1.44E-02	1.49E-02
	4	-2.45E-02	-1.70E-01	-2.33E-02	6.31E-02
	-6	1.50E-05	-1.11E-03	-3.30E-05	2.53E-04
	-5	-3.04E-04	2.17E-08	-2.67E-04	-1.18E-03
	-4	2.30E-05	-3.38E-04	-3.67E-05	6.82E-04
	-3	1.59E-04	3.10E-08	3.33E-04	7.99E-04
6	-2	3.27E-05	-2.99E-03	3.10E-05	7.41E-03
	-1	-6.87E-04	2.14E-09	3.58E-04	-1.44E-03
	0	-1.69E-05	-1.24E-03	2.03E-05	-1.32E-03
	1	8.72E-05	3.84E-08	-1.69E-04	-2.21E-04
	2	-2.25E-04	1.05E-02	-2.61E-04	-6.97E-03

3	-1.20E-04	-1.05E-08	-3.77E-05	-1.25E-03
4	-1.53E-04	5.91E-04	6.17E-05	-3.92E-04
5	8.65E-06	2.87E-08	1.71E-05	-1.40E-03
6	3.22E-05	1.06E-03	5.88E-06	-1.01E-03

Table S9. SINGLE_ANISO computed wave function decomposition analysis for the Dy(III) centre. The major dominating values are kept in bold.

±mJ	wave function decomposition analysis 1-Dy
KD1	96.5 % ±15/2 >
KD2	49.1 % ±13/2 > + 27.2% ±9/2 > + 11.9% ±5/2 >
KD3	25.1 % ±1/2 > + 20.8 % ±3/2 > + 19.6 % ±7/2 >
KD4	44.6 % ±11/2 > + 27.3% ±7/2 > + 9.0% ±3/2 >
KD5	37.6 % ±9/2 > + 30.8% ±13/2 > + 10.9% ±7/2 > + 10.8% ±11/2 >
KD6	22.9 % ±5/2 > + 22.9% ±11/2 > + 20.9% ±7/2 > + 16.2% ±9/2 >
KD7	32.9 % ±3/2 > + 27.7% ±5/2 > + 15.6% ±7/2 > + 12.2% ±11/2 >
KD8	59.7 % ±1/2 > + 27.7% ±3/2 >

±mJ	wave function decomposition analysis 2-Dy
KD1	97.2 % ±15/2 >
KD2	51.3 % ±13/2 > + 39.2% ±9/2 >
KD3	52.2 % ±11/2 > + 43.7% ±7/2 >
KD4	39.8 % ±5/2 > + 28.4% ±3/2 > + 18.8% ±1/2 >
KD5	36.4 % ±9/2 > + 36.1% ±13/2 > + 12.1% ±1/2 >
KD6	46.5 % ±7/2 > + 41.4% ±11/2 >
KD7	42.3 % ±5/2 > + 33.5% ±3/2 > + 17.6% ±9/2 >
KD8	65.4 % ±1/2 > + 25.7% ±3/2 >

±mJ	wave function decomposition analysis 3-Dy
KD1	96.8 % ±15/2 >
KD2	53.1 % ±13/2 > + 35.5% ±9/2 >
KD3	46.4 % ±7/2 > + 43.1% ±7/2 >
KD4	32.6 % $ \pm 3/2\rangle$ + 28.4% $ \pm 5/2\rangle$ + 23.8% $ \pm 1/2\rangle$
KD5	41.8 % ±9/2 > +40.8% ±13/2 > +9.7% ±5/2 >
KD6	39.4 % ±7/2 > + 33.4% ±11/2 > + 14.8% ±5/2 >
KD7	38.4 % ±3/2 > + 35.1 % ±5/2 >
KD8	65.3 % ±1/2 > + 26.5% ±3/2 >

|--|

KD1	96.8 % ±15/2 >
KD2	54.5 % ±13/2 > + 35.7% ±9/2 >
KD3	50.6 % ±11/2 > +43.1% ±7/2 >
KD4	32.6 % $ \pm 3/2\rangle$ + 32.5% $ \pm 5/2\rangle$ + 24.4% $ \pm 1/2\rangle$
KD5	41.6 % ±9/2 > + 38.2% ±13/2 >
KD6	38.4 % ±7/2 > + 32.0% ±11/2 > + 13.9% ±5/2 >
KD7	37.8 % ±3/2 > + 35.8 % ±5/2 >
KD8	65.5 % ±1/2 ⟩ + 25.7% ±3/2 ⟩

±mJ	wave function decomposition analysis 5-Dy
KD1	99.9 % ±15/2 >
KD2	99.0 % ±13/2 >
KD3	78.0 % ±11/2 > + 15.6% ±7/2 >
KD4	36.6 % $ \pm 3/2\rangle$ + 30.1% $ \pm 1/2\rangle$ + 15/4% $ \pm 11/2\rangle$
KD5	35.9 % ±9/2 > + 33.7% ±1/2 > + 12.6% ±7/2 >
KD6	43.8 % ± 5 /2 > + 33.1% ±3/2 > + 16.8% ±9/2 >
KD7	49.9 % ±7/2 > + 30.2 % ±9/2 > + 13.2% ±5/2 >
KD8	26.9 % $ \pm 5/2\rangle + 17.4\% \pm 3/2\rangle + 12.2\% \pm 1/2\rangle$

Table S10. CASSCF/NEVPT2 computed low-lying 21 sextets (in red) and 224 quartet states (in black) along with spin-orbit coupled states (in blue, Kramer doublets). All the values are reported here in cm⁻¹.

1-Dy											
	CASSCF										
0.0	24117.3	25907.1	33920.0	56677.6	76469.3	105351.6					
11.2	24124.3	25967.1	33949.3	56688.8	76508.1	105407.0					
92.9	24156.8	26024.8	33984.3	56749.9	76517.7	105508.6					
252.8	24200.8	26117.1	34040.0	56808.9	76561.6	105543.4					
305.0	24216.4	29061.5	34123.9	56826.7	76571.5						
346.9	24238.0	29063.2	34140.2	56850.2	76591.9						
415.3	24269.4	29123.4	34147.4	56878.1	76594.1						
464.7	24284.9	29142.5	34166.5	57012.4	77830.2						
698.2	24363.0	29154.4	36907.4	57045.9	77856.0						
904.0	24475.8	29161.7	36921.1	57060.2	77879.0						
927.5	24503.8	29270.6	37046.8	57104.1	78044.0						
7490.9	24525.3	29272.6	37061.2	57117.5	78168.0						
7589.1	24541.2	29322.2	37164.3	57127.3	78235.1						
7703.0	24587.0	29338.4	37194.1	57137.9	78277.2						
7790.1	24604.7	29342.0	37296.8	57185.8	84467.2						
7830.9	24616.6	29355.3	37357.8	57191.4	84530.0						
7898.0	24670.9	29362.5	37431.0	61478.4	84662.7						
8013.9	24682.6	29435.2	37474.2	61479.1	84954.4						

34270.1	247	05.3	2943	6.4	37500.2	6	1534.2	849	67.3		
34702.6	247	07.0	3046	8.7	37586.8	6	1545.4	872	25.7		
34864.7	247	19.1	3048	1.1	42560.5	6	1590.2	872	47.8		
	247	30.1	3048.	3.3	42831.8	6	1606.6	873	30.3		
	247	63.4	3049	6.0	42953.1	6	1628.3	873	57.8		
	247	88.2	30514	4.8	43107.3	6	1702.5	873	73.1		
	248	07.5	30534	4.3	43156.3	6	1711.9	873	92.8		
	248	75.7	3054	3.6	43222.5	6	1858.1	874	29.1		
	248	81.8	3056	5.5	43323.9	6	1862.1	876	75.3		
	249	08.2	3060	7.8	44310.0	6	1953.7	876	81.2		
	249	78.1	3062	2.2	44314.6	6	1954.7	878	57.0		
	250	19.9	3063	6.7	44385.0	6	2069.3	878	59.3		
	250	48.8	3073	0.6	44390.4	6	2070.3	879	88.0		
	250	57.7	3074	5.1	44466.7	6	6592.6	879	93.3		
	250	72.0	3074	7.3	44483.6	6	6733.6	977	36.6		
	250	80.4	3074	8.6	44534.0	6	7138.0	979	09.0		
	251	22.5	3075	1.0	44546.2	7	2284.2	980	11.1		
	251	86.0	3076	0.7	44592.2	7	2335.3	980	85.2		
	251	93.3	32324	4.5	44706.5	7	2682.9	983	40.7		
	2.52	62.8	3238	7.3	44728.2	7	2757.0	984	81.4		
	252	64.3	3255	0.3	44860.9	7	2845.1	985	01.0		
	2.57	51.6	32.58	7.3	44865.8	7	6162.5	105	074.0		
	257	65.3	32.624	4.3	56609.7	7	6439.3	105	114.2		
	258	44 9	3386	0.4	56634 7	7	6448.8	105	154.6		
	258	76.0	3387	4.0	56649.0	7	6460 5	105	162.4		
	258	97.6	3391	1.1	56669.6	7	6466.4	105	251.8		
 0.00		1408	7 45	2	8814 71	,	33955 4	53	37	655 93	
198.68		1488	.19	2	28836.50		33967.2	27	37	680.28	
223.33		1490	.52	2	28865.42		33992.0)4	38	002.02	
280.74		1535	7.65	2	28897.17		34019.	6	38	040.62	
411.46		2438	.73	2	28966.74		34077.8	38	38	072.57	
472.46		2444	7.74	2	29357.97		34104.9	92	38	130.83	
583.01		2455	5.01	2	29371.98		34131.	79	38	156.63	
746.22		24669	0.01	2	29410.94		34154.	4	38	210.60	
3139.91		2489	.40	2	29463.21		34169.3	34	38	232.41	
3200.83		26529	9.92	2	29537.24		34185.9	95	38	356.16	
3340.54		26692	2.84	2	29561.39		34221.0)8	38	381.08	
3389.82		2673	7.65	2	29590.03		34249.4	12	38	419.14	
3452.62		26778	3.55	2	29598.35		34294.5	55	38	440.94	
3500.96		26836	5.19	2	29616.65		34308.2	20	38	520.72	
3551.62		26887	7.32	3	30319.78		34331.0)4	38	680.65	
5413.18		26909	9.06	3	30412.51		34344.6	51	38	741.20	
5449.53		26950	5.81	3	30487.82		34359.8	39	38	773.07	
5561.10		27096	5.74	3	30547.70		34373.9	91	38	877.46	
5644.25		27136	5.32	3	30590.89		35344.0	00	38	892.92	
5705.84		27180).44	3	30626.79		35361.2	21	38	914.62	
5738.75		27198	3.35	3	31509.39		35399.4	17	38	925.08	
7125.21		27244	1.32	3	31554.52		35458.5	56	38	947.04	
7187.00		27220	87	2	81570.00		25508	20	20	068 80	

7303.47	27425.1	7	31591	.47	35	576.19		39043.18	
7389.93	27450.9	3	31625	.27	35	690.05		39117.60	
7444.22	27465.5	5	31670	.55	35	758.56		39603.58	
8479.86	27527.7	9	31681	.30	35	799.04		39610.28	
8518 77	27665 3	0	31722	67	35	852 75		39638 55	
8691.61	27005.5	7	31747	88	35	919.26		39659 48	
8779.87	27771.0	27771.00		36	35	944 51		39668 35	
9468 76	27787.4	4	31879	71	36	033.04		39670 16	
9634.04	277834.2	6	31013	.71	36	240.41		39737 37	
0645 34	27037.2	0	31071	.70 84	36	240.41		307/0 0/	
9660 08	27943.2	1	32001	.0 4 64	36	203.19		39749.94	
9688.95	28246.6	T Q	32001	.0 4 64	36	802.18		30772 50	
9088.95	28240.0	0	22115	.04	30	045 15		39772.30	
9703.09	20201.9	0	22123	16	26	068 20		39800.27	
9050.70	20320.5	9 7	22101	21	20	908.20		20022.24	
9001.33	20397.1	5	22191	.21	37 27	039.12		39923.24	
9880.31	28439.1	0	32220	.57	3/	337.80		39949.02	
11022.64	28466.4	8	32232	.30	3/	380.69		39998.17	
11110.85	284/8.6	4	32305	.13	3/	469.86		40429.57	
11131.61	28508.6	/	32330	.48	3/	4/8.24		40452.16	
11167.70	28529.4	0	32341	.70	37	488.65		40535.45	
11189.56	28587.0	2	32406	.40	3/513.03			40577.86	
12650.94 28609.94		4	32450	.90	37	532.80		40595.16	
12751.85	28647.0	6	32806	.05	37	537.56		40601.90	
12814.70	12814.70 28699.65		32859	.74	37	546.27		40621.45	
12840.99	28739.8	9	32885	.43	37	556.35		40632.23	
13968.96	28751.4	9	32963.83		37	596.74		40678.72	
14061.98	28801.8	4	33089	.64	37	620.98		40695.42	
40729.37	50210.96	6	3/73 60	73/1	0.55	86080 31	1	104456 70	
40986.67	50210.50	6	3480 38	7/80	0.55	88076 73	2	104430.70	
41001.02	50248.02	6	2521.82	7512	2.30 2.12	80370.72	, 2	104591 55	
41082.92	50207.01	6	3521.05	752	13.12	89440.08	, 2	110130 03	
41106 58	50456.40	6	<i>J</i> JJJJ.17 <i>J</i> 130 37	7530	01 00	89896 58	2	110107.05	
42210.15	50536.20	6	4150.57 A161 72	782/	1.70	90008 96	5	110502.05	
42210.13	50600.40	6	-101.72 /105 78		10.71)5 56	00080.50	, 7	110940.71	
42255.52	50701 11	6	4175.70 4218 10	7852	0.10	909/3 12	,	110010.88	
42205.11	50854 75	6	4210.10 1280 16	7018	2 83	01111 20	2	1110919.88	
42408 52	50882 70	6	4207.10	7030	5.05	01228 6/	, 1	1110/5.55	
42408.32	50071 77	6	4400.07	8040	9.20 9.11	01207.04	t S	111215.56	
42431.90	5009006	6	4445.01	00 4 0	7 50	01574.75	, ,	111240.07	
42557.45	51026.67	6	4506.01	8165	12 69	915/4./.	,)	111203.29	
42343.74	51050.07	6	5680 11	8160	3.00	91000.00) I	111321.42	
42074.09	511062.39	6	5000.44	0105	1.20	91/10.31	l S	1113/1.03	
42072.20	51216/.0/	0 6	5770 01		1.02	01051 10	, ו	111437.73	
42//3.33	J1240.00	0 6	5022 21	01/4	10.01 6 01	02002 22	י ד	111403.01	
42020.92	J141/.28 51/26 70	0	2022.24 5070.27		0.21 01.04	92002.37	' 7	111339.90	
42207.70	J1430./8 51576.20	0 2	20/0.2/ 5066 72		01.00 04.45	92227.07	/)	111580.08	
43321.09	51520.38	0 6	5700.73 6058 88	01/5	1.4J	02015 40	7)	111033.13	
4.7.7/0)4	101/09	0	00.00		1/	⊨ <u>7.701.</u> 3.00	,	1 111/4/ 10	

43628.35	51778.68	66173.78	81815.78	93082.49	111904.35
44701.32	60361.72	66268.65	81827.00	93150.49	
44755.41	60425.14	66666.94	81850.13	93243.69	
44783.42	60468.54	66714.62	81866.08	93326.01	
45576.69	60502.47	66771.21	81887.50	93501.44	
45650.20	60541.60	66810.85	81912.23	93626.00	
46130.31	60565.64	66891.82	81922.36	93948.44	
46162.42	60698.13	66972.84	81932.59	94030.26	
47059.10	60791.71	67061.36	81976.83	94114.77	
47085.16	60812.47	67165.90	81987.60	94227.30	
47110.21	60856.06	67565.32	81997.61	94366.06	
47591.52	60915.99	67614.65	82008.13	94508.53	
47768.38	60956.30	67670.44	82028.69	94526.13	
47891.57	61008.13	67743.29	82462.25	94578.63	
48693.08	61036.95	67845.03	82531.91	94802.85	
48789.47	61109.26	67914.85	82640.10	94937.97	
48837.11	61174.33	68030.39	82701.50	95090.49	
48856.35	61318.81	68353.41	82728.06	101856.34	
48904.39	61388.32	68400.18	83227.88	102143.90	
48936.70	61552.00	68487.27	83313.31	102668.45	
48957.75	61658.19	68648.85	84957.52	102820.14	
48977.81	61688.93	68706.87	85115.14	102891.74	
49004.14	61809.06	68842.23	85202.21	103523.33	
49071.55	63130.89	69541.78	85268.92	103595.23	
49172.13	63365.78	69650.85	85713.68	103643.93	
49289.40	63396.33	69816.87	85849.46	103797.87	
50130.59	63439.46	70524.15	85937.51	104274.25	
50155.10	63450.12	70816.59	86053.12	104335.27	

	1-Dy										
	NEVPT2										
0.0	23620.2	26821.0	32566.6	52467.1	70086.0	94804.8					
3.8	23696.7	26880.6	32601.2	52486.7	70135.0	94831.2					
88.3	23716.5	27119.9	32652.4	52523.2	70149.0	94991.6					
263.5	23819.5	27148.7	32716.2	52569.5	70210.3	95018.7					
312.5	23845.2	29092.5	32816.8	52633.5	70225.7						
315.4	23845.4	29094.6	32834.3	52637.4	70243.3						
352.4	23871.5	29156.1	32855.1	52660.8	70243.6						
519.8	23945.7	29177.3	32876.6	52681.0	70324.4						
725.2	24003.3	29186.5	33974.3	52705.3	70352.3						
960.1	24016.7	29196.6	34062.3	52712.0	70372.3						
980.0	24022.6	29354.4	34086.0	52742.0	70539.4						
6204.4	24024.3	29358.4	34147.1	52846.1	70703.9						
6355.8	24083.7	29401.0	34191.6	52848.2	70792.4						
6468.7	24113.5	29446.4	34449.2	52893.1	70861.1						
6583.1	24115.7	29452.7	34662.2	52937.0	74995.2						
6604.4	24210.7	29460.2	34677.8	53047.3	75080.6						
6634.3	24210.7	29464.0	34694.9	57839.5	75181.8						

6766.5	24233.7	29531.7	34778.5	57841.7	75515.5	
28897.4	24233.8	29532.1	34878.0	57902.1	75523.1	
29393.1	24246.0	29586.9	34888.8	57905.6	79816.0	
29512.7	24252.8	29638.8	39924.5	57933.8	79836.7	
	24317.5	29833.5	40306.1	57951.4	79923.0	
	24364.8	29834.1	40426.6	57974.2	79955.4	
	24468.4	29868.7	40627.9	58053.3	79977.8	
	24569.2	31203.4	40631.7	58062.0	80005.4	
	24629.4	31211.3	40652.9	58163.8	80022.7	
	24809.1	31226.4	40776.7	58172.2	80230.7	
	24905.5	31243.4	42505.2	58338.4	80236.2	
	24913.2	31254.4	42512.7	58338.6	80506.9	
	24960.4	31262.3	42619.9	58447.7	80507.3	
	25044.9	31289.3	42628.1	58448.4	80622.0	
	25391.4	31307.1	42689.0	60426.8	80624.1	
	25426.1	31346.6	42699.9	60526.9	88091.7	
	25440.9	31370.2	42728.4	61001.5	88290.1	
	25455.0	31379.6	42738.4	65470.0	88330.2	
	25482.3	31467.6	42786.4	65521.0	88444.9	
	25753.1	31482.5	42902.5	65905.4	88725.8	
	25912.4	31483.8	42924.3	65974.1	88874.9	
	26207.6	31488.5	43091.7	66042.8	88889.2	
	26251.6	31492.5	43094.6	68577.3	94514.2	
	26502.2	31504.1	52287.9	70051.7	94590.9	
	26573.1	32495.4	52309.0	70068.1	94635.5	
	26617.0	32509.1	52411.7	70077.3	94657.3	
	26626.1	32543.5	52415.4	70085.6	94727.3	

0.00	12841.77	29658.55	32759.12	36941.36
194.87	13596.36	29698.61	32842.68	37035.08
244.14	13616.67	29765.74	32904.64	37067.21
284.71	14049.10	29815.09	32935.61	37107.04
416.31	23908.78	29883.42	33006.15	37145.93
494.48	23970.70	29922.65	33063.22	37235.53
605.30	24014.97	29968.38	33137.16	37286.31
801.31	24156.41	30000.08	33168.42	37335.11
3139.46	24304.39	30041.63	33360.00	37374.60
3197.49	25266.90	30062.00	34123.25	37392.03
3361.09	25305.71	30081.03	34348.65	37404.56
3414.05	25344.57	30121.23	34473.17	37453.12
3477.08	25390.34	30182.76	34499.53	37472.11
3520.51	25414.13	30222.11	34561.73	37512.62
3581.47	25449.45	30254.15	34585.47	37527.80
5380.27	26517.93	30377.46	34635.40	37634.91
5426.97	26638.21	30460.55	34643.83	38119.31
5548.37	26743.97	30513.63	34676.12	38133.59
5631.30	26827.76	30615.35	34728.15	38149.82
5698.04	26875.50	30736.61	34764.02	38171.66

	5739.37	26	941.63		31068	.11	34	807.56		38184.90)
	7074.06	26	992.69		31171	.33	34	834.37		38224.53	
	7145.12	27	061.17		31188	.36	34	866.96		38241.78	
	7267.29	27	364.19		31222	07	34	878.35		38291.33	
	7356.67	27	656.72		31294	.83	34	917.22		38298.31	
	7424.21	27	732.50		31309	.61	34	941.65		38339.79	
	8332.20	27	804 21		31416	74	34	959.60		38345.61	
	8375 78	27	843 78		31566	46	34	972 39		38377.09	
	8396.07		906 35		31668	: 09	34	986.40		38390 11	
	8422.35		900.99 1950 04		318/12	32	35	027 81		38/28 06	
	8/37 33		017.81		31883	.10	35	027.01		38/37 01	
	8522.83		017.01		31013	60	35	001.00		38/01 07	,
	8603.85	20	162.60		21028	25	25	124.01		28520.06	
	8605.85		214.04		21051	07	25	134.01		20507.01	
	8045.21	28	214.04		21070	.07	33	148.91		207(4(0	
	8003.84	28	200.02		319/0	0.40	35	109.03		38/04.09	
	8/62.5/	28	327.62		32030	0.94	35	282.33		38839.03	
	9422.81	28	3/9.51		32063	.00	35	/19.80		39401.80	
	9592.70	28	441.47		32150	0.02	35	852.28		39494.48	
	9767.42	28	594.84		32204	.01	35	947.64		39543.93	
	9845.01	28	657.83		32231	.67	35	975.47		39583.60	
	9945.35	28	725.34	32282.		65	36	025.51		39613.64	
	9961.54	28	801.13		32303	.89	36094.51			39706.69	
	9996.16	28	886.73		32318	.20	36134.94			39761.68	
	10042.96	29	29117.62		32377.41		36	283.61		39780.50	
	11442.75	29	182.80		32398.01		36	692.73		39821.34	
	11549.93	29	304.62		32421	.76	36	729.78		39888.75	
	11608.20	29	379.76		32501	.35	36	787.22		39934.26	
	11639.83	29	449.79		32614	.98	36	806.93		40056.35	
	12725.97	29	510.87		32676	.36	36	848.85		40142.85	
	12810.98	29	619.19		32746	.64	36	893.44		40189.19	
		·		•			•				
ſ		404 - 4								0.4=0.4.4	•
	40217.65	48154	.53	592	16.41	6720)1.67	78469.	18	94781.0)3
	40226.84	48313	.79	5924	12.60	6803	35.40	79707.	17	94879.2	24
	40245.15	48333	.40	5920	51.03	6827	76.79	80367.0)7	94937.3	30
	40251.39	48396	.91	5934	19.98	6839	93.44	80408.3	35	99677.0)4
	40273.11	48432	.26	598	70.17	6853	37.00	80774.4	15	99837.7	70
	40304.65	48483	.80	5989	92.02	7146	55.90	80879.5	56	100083.	92
	40331.10	48509	.36	5993	32.38	7161	2.99	80959.2	20	100429.	85
	40350.02	48551	.47	599′	74.32	7174	17.44	81613.	77	100496.	65
	40389.06	48646	.21	6000	58.92	7225	59.37	81768.2	76	100681.	35
	40400.33	48747	.07	601	53.89	7245	51.51	81895.	51	100747.	79
	40822.84	49225	.13	601	77.27	7358	35.16	82073.9	91	100788.	30
	40955.94	49244	.06	6020	54.86	7499	97.83	84215.9	97	100842.	67
	40980.73	49283	.46	6030	58.84	7505	57.80	84304.	55	100883.	22
	41101.98	49331	.25	6200	58.34	7514	14.39	84358.4	19	100918.	76
	41152.05	49441	.82	6212	26.89	7520)5.44	84402.2	29	100987.	08
	41164.18	49502	.07	6215	57.48	7525	50.13	84499.2	77	101030.	60
	41191.85	49656	.09	6220)5.31	7530)0.26	84612	36	101102	90

41204.03	49685.59	62244.02	75330.33	84917.16	101119.98
41261.40	49763.18	62348.89	75342.22	85007.98	101182.26
41271.63	49893.30	62391.40	75357.52	85694.75	101312.26
41296.93	50028.99	62583.33	75371.07	85765.80	101488.08
42230.60	56124.12	62673.53	75397.20	85826.14	
42267.14	56198.49	63034.53	75419.06	85919.88	
42320.22	56220.28	63079.56	75442.20	85985.40	
42411.84	56256.39	63127.91	75451.93	86213.56	
42493.48	56294.00	63168.70	75483.11	86338.36	
43318.28	56324.82	63233.95	75500.52	86625.39	
43402.74	56405.69	63260.69	75526.26	86708.07	
43957.17	56508.72	63305.11	75533.92	86784.37	
44101.60	56531.98	63381.07	75551.24	86881.28	
44163.31	56563.88	63449.63	75570.50	87067.74	
44731.76	56618.49	63538.69	75592.74	87174.57	
44899.01	56735.11	63556.15	75599.93	87216.04	
44989.71	56808.70	63928.36	75625.52	87232.14	
46114.05	56838.45	63974.12	75651.61	87425.12	
46270.65	56897.65	64027.50	75663.02	87623.84	
46374.70	56963.04	64105.71	75682.28	87771.49	
46439.54	57125.97	64137.22	75696.00	92244.60	
47037.28	57181.96	64188.03	75949.52	92531.16	
47105.33	57249.22	64296.34	76025.52	93033.57	
47174.93	57345.47	64415.58	77588.84	93194.87	
47200.93	57394.53	64468.11	77754.86	93260.01	
47224.33	57462.45	64720.96	77830.49	93862.33	
47291.71	58801.73	64766.52	77912.90	93944.03	
47392.54	59009.32	64844.36	78064.79	93986.09	
47534.81	59106.92	64982.61	78158.33	94148.07	
47972.58	59143.13	65091.20	78367.30	94601.24	
48059.64	59188.10	65228.36	78418.27	94650.70	

Table S11. CASSCF computed low-lying 21 sextets (in red) and 224 quartet states (in black) along with spin-orbit coupled states (in blue, Kramer doublets). All the values are reported here in cm⁻¹.

	2-Dy							
0.7 24093.5		25826.4	33853.3	56641.3	76399.4	105247.7		
97.3	24095.9	25894.4	33880.9	56641.7	76411.5	105260.7		
193.4	24144.5	25958.1	33886.6	56686.3	76417.5	105390.0		
249.3	24151.2	26015.9	33982.0	56705.9	76485.0	105396.8		
275.4	24205.5	28990.9	34051.7	56709.5	76491.5			
323.4	24223.3	28994.4	34060.3	56786.7	76500.4			
448.5	24253.2	29065.7	34062.2	56788.8	76501.2			
660.9	24274.1	29067.2	34101.1	56936.6	77750.6			
742.9	24343.4	29087.0	36912.5	56943.6	77792.8			
802.5	24424.6	29103.0	36928.3	57005.0	77825.5			

7435.	3 24	432.5	2918	9.8	36957.4	5702	24.8	779	33.5		
7600.	4 24	449.0	2919	6.0	36958.2	5703	2.1	780	57.8		
7649.	6 24	453.9	2925	4.8	37090.2	5703	2.5	781	04.2		
7714.	2 24	525.9	2926	0.3	37132.7	5705	3.3	781	98.8		
7747.	5 24	567.3	2927	7.8	37246.6	5708	35.1	843	94.1		
7801	4 24	611.2	2927	8.0	37260.5	5710	3.5	844	95.2		
7906	6 24	632 7	2928	69	37366.2	6146	69	845	32.2		
34208	.8 24	639.5	2934	1.2	37369.5	6146	57.3	848	58.3		
34661	$\frac{10}{3}$ 24	642 6	2934	4.0	37382.9	6148	4 2	848	72.8		
34750	$\begin{array}{c c} .5 & 2 \\ 7 & 24 \end{array}$	1646 2	3042	5 5	37443 3	6148	95	872	03.0		
51750	., 24	674 8	3043	03	42506.1	6152	74	872	19.7		
	24	1693.8	3043	5.4	42880 5	6154	77	872	88.4		
		1025.0	3045	17	42890.2	6156	57	873	03.6		
		17/18	3045	22	42070.2	6163	2 3	873	03.0 /3.0		
		17716	2047	0.8	43020.3	616/	62.5	873	52.2		
		1700 7	2040	0.0 2.0	43043.3	6165	$\frac{10.2}{2.0}$	073 872	55.2 60.2		
		1000 0	2050	2.0	43098.0	6165	2.0	073 074	22.6		
		1010.9	2052	1.9 7 0	43199.3	6102	12 0 V	0/4	52.0		
		1049.4	2054	/.0 7.0	44223.1	(107	3.0	0/4	51.0		
	24	1020 4	3034	1.8	44232.2		0.1	8//	39.3		
	24	1938.4	3055	4.4 5 0	44393.2	6190	5.5	8//	00.3		
	24	1940.2	3063	5.8	44395.7	6196	06.3	8/8	81.0		
	24	19/0.3	3064	5.1	44435.2	6653	07.8	8/8	85.8		
	24	1990.2	3064	6.3	44440.7	6662	27.6	977	58.6		
	24	1991.0	3065	0.9	44451.2	67/04	2.4	978	22.5		
	25	5014.1	3066	0.2	44460.0	7223	2.0	979	04.2		
	25	5083.2	3066	2.0	44478.5	7227	7.5	980	18.5		
	25	085.1	3229	6.5	44588.8	7257	//.1	981	44.0		
	25	5161.9	3233	6.7	44608.5	7268	39.7	983	82.1		
	25	5162.7	3248	5.3	44750.4	7273	2.3	984	22.8		
	25	5670.4	3248	7.8	44752.2	7607	/4.6	1049	979.0		
	25	5686.9	3252	1.7	56577.9	7637	/5.1	1050	006.6		
	25	5762.5	3380	9.9	56578.6	7638	36.3	105	128.1		
	25	5788.5	3381	5.8	56586.8	7638	39.1	105	133.5		
	25	5807.3	3384	6.7	56608.0	7639	0.9	105	163.3		
0.0)()	1402	8 04	2	8735.06	33	943 30	0	37	599.85	
148	.93	1482	8.59		28774.86	33	949.20	9	37	622.34	
192	83	1484	0.46		8781 15	33	975 39	9	37	960 58	
300	.05 67	1530	1 31		28808 58	33	987 1	8	37	987 40	
361	33	2437	8 14		28891 94	34	032 4	5	38	007.63	
450	07	2437	9.66		9303 62	34	061 1	1	38	079.65	
513	02	2472	8 99		9320.99	34	.083 10	, ,	38	095 68	
674	07	2452	1 98		9387 84		.102.09	κ	38	147 84	
3101	86	2400	3 83		9415 26	2/	.110 7'	7	28	162 50	
3161	31	2-100	1 93		9466 50	2/	120.7	1	20	312.55	
3161.31		2052	7 /0		22700.23	24	1/0.7	1	20	330.06	
3341.37		2004	5 70		22504.05	2/	166 74	1 6	20	358 71	
2104	5.99	2007	5.17		0576 72	24	-100./0 	1	20 20	265 01	
		20/3	5.07	4	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	34	224.04	т		505.04	

3426.53		26810.2	5	29530	.33	34	230.80		38486.57
3457.86		26851.0	5	30279	.84	34	259.01		38622.34
5391.24		26867.4	3	30362	.10	34	268.93		38680.27
5403.95		26911.18	8	30484	.04	34	284.28		38726.01
5539.78		27070.2	3	30500	.78	34	301.63		38825.99
5588.64		27103.0	3	30532	.79	35	314.53		38838.96
5644.02		27124 50	5	30537	09	35	320.11		38853 75
5690.12		27145 39	,	31457	77	35	356 34		38863 70
7121 70		27185.9))	31531	43	35	408.05		38892.01
7135.46		27255.60)	31533	55	35	446 97		38909 94
7259.46		27233.0	1 1	31552	41	35	502.93		38965 37
7318 74		27439.5	7	31588	02	35	640.32		39041 41
7406.27		27449.0	, ,	31610	05	35	713 58		39554 99
8461.63		275271	7	31626	.05	35	724 68		39557 42
8486 31		27567.4	'n	31656	16	35	814 22		39579.40
8612.40		27674.9	, ,	31675	98	35	867.95		39598.09
8747.60		27074.92	- 1	31822	.90 81	35	889 15		39607 77
9426 58		27729.2	7	31840	83	35	954 75		39674 47
9590.28		27748 4	_ ,	31875	.0 <i>5</i> 57	36	193 31		39678.06
9628.61		27860.6	5	31918	9 <u>4</u>	36	225.94		39693.06
9636.46		27000.00	3	31920	.) 1 97	36	223.74		39696 20
9656.75		28240.80))	32072	35	36	775 98		39712 27
9712.45		28240.00	3	32092	04	36	897 51		39808 37
9763.43		28297.19))	32128	39	36	903 11		39836.22
9775 57		28364.89	, ,	32120	.57 60	36	976.23		39858 67
9809.16		28304.8	, ,	32157	.00 42	37	313.94		39892.04
10982 10		28436 7	2	32180	.42	37	339.15		39925.00
11057 59		28449 3	1	32258	23	37	421.36		40367.64
11082 52		28487.49))	32250	34	37	423.47		40423.93
11106.91		28504.94	1	32270	.54 21	37	433 56		40463 29
11120.48		28540.02	3	32275	.21 81	37	461 76		40512.61
12615 30		28560.6	,	32373	18	37	471 54		40544 04
12696.97		28586.52	2	32748	22	37	481 48		40547 56
12050.57		28631.29	, ,	32798	.22	37	485 87		40565.83
12776.20		28652.9	R	32822	07	37	509 49		40572.44
13928.89		28670.50	5	32022	04	37	517.80		40614 71
14004.26		28727.6	7	33004	.23	37	561.51		40625.53
			-		_			1	
40655 73	4	50150 58	6	2412.20	722/	1 9 1	86000.04	5	104222.84
40035.75		50200.04	6	3412.50	7/8/	12.85	88006.7))	104323.84
40920.33	-	50227 02	6	3440 93	7506	53.85	89320 13	2	10451940
41013 54	-	50300 34	6	3471 97	7520)5.85)6 79	89346.96	5	110070 28
41046.82	4	50392 20	6	4071 42	7520	/1.89	89846.86	5	110233.26
42184 71	4	50471 50	6	4102 15	7810	3.10	89914 90	ĵ	110451 84
42196.26	4	50587 58	6	4134.05	7834	6 25	90011 94	1	110775 91
42225 53	4	50631 16	6	4155 51	7843	6 07	90932 54	5	110852 64
42261 32	-	50771 96	6	4221 56	7912	25 64	90999 04	1	111010 12
42300.09	4	50776.69	6	4348.08	7931	4.77	91144 81	1	111142 40
		/ / / / / / / / / / / /	• • • •	10100	1 122	/ /			

42373.74	50891.62	64384.86	80340.69	91330.58	111191.90
42466.74	50963.96	64442.05	81611.38	91574.50	111219.74
42506.74	50982.25	64508.39	81617.46	91620.03	111280.95
42606.56	51027.47	65687.81	81640.48	91691.50	111311.34
42643.18	51114.64	65696.37	81656.10	91702.07	111360.01
42707.39	51181.99	65750.81	81689.15	91767.28	111381.25
42737.87	51329.74	65761.30	81704.82	91780.75	111430.75
43338.44	51425.12	65818.47	81712.85	92147.24	111485.92
43488.36	51463.28	65861.81	81725.51	92232.19	111500.16
43492.16	51560.27	65908.96	81736.51	93026.73	111649.34
43557.20	51684.89	66107.67	81749.18	93031.33	111792.33
44651.79	60309.71	66176.28	81767.82	93096.25	
44689.19	60369.23	66658.79	81785.71	93120.44	
44724.52	60409.72	66668.11	81794.22	93192.75	
45525.16	60447.95	66714.55	81815.00	93427.11	
45590.46	60480.74	66757.75	81836.34	93532.38	
46075.78	60508.16	66799.74	81858.60	93947.66	
46096.98	60645.24	66838.86	81865.56	93975.16	
47003.05	60733.61	66998.18	81902.02	94032.17	
47022.56	60750.15	67075.03	81914.84	94079.60	
47044.11	60817.40	67548.20	81917.81	94293.60	
47552.87	60855.50	67564.85	81925.01	94421.02	
47697.76	60929.40	67619.40	81949.13	94517.90	
47815.43	60959.49	67681.00	82402.10	94532.32	
48631.60	60991.89	67693.40	82456.35	94615.66	
48722.25	61000.66	67853.31	82561.59	94855.00	
48789.51	61055.46	67941.42	82610.87	94999.95	
48841.69	61255.43	68336.37	82627.54	101819.87	
48861.94	61317.81	68355.85	83160.37	102054.55	
48881.92	61501.71	68439.79	83241.89	102619.02	
48898.16	61602.09	68483.57	84913.42	102740.15	
48933.26	61614.65	68644.84	85040.94	102804.02	
48944.34	61749.36	68754.38	85113.50	103466.02	
48989.72	63077.48	69485.64	85197.66	103544.15	
49082.99	63323.68	69602.57	85650.73	103564.97	
49204.47	63340.43	69733.95	85780.53	103697.76	
50055.78	63371.44	70458.08	85868.35	104237.83	
50131.05	63384.61	70737.05	85970.76	104254.85	

Table S12. CASSCF computed low-lying 21 sextets (in red) and 224 quartet states (in black) along with spin-orbit coupled states (in blue, Kramer doublets). All the values are reported here in cm⁻¹.

3-Dy							
0.0	24110.6	25874.9	33889.1	56661.6	76435.3	105300.1	
8.6	24115.9	25928.3	33922.8	56668.9	76460.4	105335.1	
108.0	24159.5	25993.8	33938.6	56727.7	76468.7	105449.0	
270.8	24186.5	26068.1	34013.3	56769.8	76527.0	105469.0	

.	-									
291.1	24	220.8	2903	2.1	34089.6	56	771.9	765	35.3	
297.7	24	223.9	2903	3.3	34101.8	56	804.0	765	48.3	
355.9	24	277.5	2909	9.1	34109.9	56	824.1	765	50.0	
456.5	24	282.8	2911	5.1	34136.5	56	993.2	778	02.0	
676.8	24	357.5	2912	1.4	36916.6	57	003.1	778	18.7	
833.2	24	455.5	2912	9.3	36923.7	57	047.6	778	45.7	
865.4	24	473.0	2923	4.0	37005.1	57	075.1	779	91.2	
7467.4	24	493.7	2923	8.1	37014.1	57	076.6	781	15.8	
7599.4	24	500.0	2929	9.1	37147.0	57	092.7	781	80.3	
7681.4	24	572.0	2930	8.9	37156.1	57	101.1	782	30.9	
7756.5	24	587.3	2931	2.6	37279.6	57	117.2	844	35.0	
7797.9	24	620.1	2931	7.3	37304.0	57	122.0	845	30.8	
7849.3	24	660.5	2931	9.7	37402.5	614	482.2	845	79.2	
7963.9	24	667.6	2939	1.3	37430.1	614	486.5	849	09.3	
34238.8	24	678.2	2939	1.5	37437.8	61	500.6	849	19.3	
34734.9	24	685.3	3045	0.9	37516.2	61	512.3	872	18.5	
34765.6	24	687.5	3045	9.4	42537.3	61	562.2	872	40.1	
	24	719.8	3046	3.3	42856.9	61	585.7	873	15.2	
	24	759.1	3047	8.2	42925.7	61	588.9	873	30.1	
	24	766.3	3049	2.6	43067.5	61	670.8	873	55.5	
	24	797.9	3050	4.8	43109.7	61	681.6	873	66.7	
	24	835.7	3052	2.2	43157.7	61	754.0	873	96.2	
	24	856.2	3053	7.0	43265.2	61	757.7	875	53.8	
	24	870 3	3057	7.0	44272.3	619	9201	875	63.6	
	24	934 3	3058	8.2	44278.8	619	921.5	878	14 9	
	24	983 1	3059	8.1	44392.9	62	019.5	878	18.1	
	25	005.7	3068	7.6	44395.8	62	019.8	879	33.9	
	25	016.4	3069	8.7	44454.1	66	612.5	879	38.0	
	25	027.7	3070	1.9	44467.8	66	645.0	977	47.5	
	25	030 6	3070	2.8	44490.9	67	095 3	979	11.6	
	25	030.0 072 4	3070	2.0 6 5	44514 3		260.2	979	29.5	
	25	138.0	3071	3.0	44526.0	72	309.8	980	41.9	
	25	143 1	3231	59	44651.2	72	6624	982	44 2	
	25	2163	3236	39	44672 1	72	697 6	984	35.0	
	25	210.5	3250	<i>4</i> 1	44808.6	72	786.8	984	55.0	
	25	718.0	3252	94	44812.0	76	120.0	105	129 9	
	25	773 9	3255	л . 61	56599 3	76	411 2	105	329.9	
	25	8077	3384	0.1	56613.7	76	471.0	105	138 7	
	25	8407	338/	0.5 5 7	56621.3	76	421.) 125 <i>1</i>	105	1// 3	
	25	8529	3388	5.7 5.4	56640.0	76	427.0	105	206.1	
	23	052.7	5500	J.T	50040.0	70	727.0	105	200.1	
0.00		1405	9.72	2	28777.00		33953.0	8	37	630.73
178.97		1485	6.84	2	28804.99		33960.1	5	37	651.72
233.56		1487	2.64	2	28822.74		33984.5	9	37	982.21
277.55		1533	1.35	2	28851.48		34005.7	0	38	016.84
397.43		2438	2.91	2	28931.87		34057.8	5	38	3041.46
459.37		2444	3.20	2	29336.03		34085.8	6	38	109.20

34107.57

29346.00

38124.58

544.24

24544.08

	688.73	24638.99	29402.56	34133.07	38182.66
	3124.85	24848.17	29434.91	34140.20	38195.90
	3181.68	26526.70	29504.58	34153.05	38339.06
	3354.80	26675.52	29532.14	34183.55	38357.19
	3385.78	26713.92	29552.80	34207.39	38390.25
	3433.04	26772.27	29561.25	34264.81	38401.40
	3473.96	26826.29	29575.22	34268.04	38505.26
	3497.93	26873.79	30301.83	34298.49	38654.92
	5412.86	26890.30	30388.66	34307.64	38722.53
	5421.12	26929.03	30493.37	34319.91	38738.10
	5554.85	27101.74	30521.56	34337.48	38853.02
	5630.28	27109.98	30568.16	35332.36	38867.16
	5676.58	27156.04	30580.15	35342.33	38886.50
	5707.92	27174.81	31485.46	35380.42	38895.12
	7128.19	27214.10	31546.20	35435.54	38920.76
	7161.57	27291.28	31553.93	35479.48	38940.44
	7291.66	27425.43	31573.82	35540.16	39004.09
	7356.04	27448.13	31609.78	35666.21	39080.62
	7423.81	27457.92	31642.08	35738.30	39581.05
	8479.08	27529.14	31654.90	35764.97	39585.37
	8500.09	27620.61	31693.81	35834.13	39611.21
	8659.21	27728.02	31711.82	35901.39	39631.90
	8763.19	27740.26	31839.96	35911.36	39638.48
	9451.88	27750.46	31857.05	35994.14	39646.39
	9617.78	27790.24	31894.09	36218.17	39709.94
	9642.24	27906.70	31947.90	36257.45	39723.94
	9650.39	27976.96	31964.45	36281.28	39725.59
	9674.14	28247.60	32095.88	36790.73	39742.70
	9739.81	28267.12	32112.32	36927.73	39835.50
	9805.90	28311.06	32154.07	36934.24	39865.80
	9818.25	28384.03	32164.72	37010.19	39892.07
	9849.07	28431.54	32193.04	37338.61	39920.62
	11004.73	28457.29	32222.67	37360.51	39962.84
	11086.87	28465.37	32285.74	37448.32	40401.59
	11108.06	28504.89	32302.00	37452.40	40437.42
	11139.72	28512.53	32317.80	37461.60	40500.61
	11156.33	28566.58	32368.74	37489.72	40546.59
	12635.57	28585.48	32410.08	37504.84	40570.51
	12726.97	28621.18	32776.78	37512.99	40575.97
	12786.15	28667.53	32832.99	37517.48	40594.67
	12810.26	28701.57	32856.65	37535.41	40602.92
	13951.43	28709.94	32939.95	37554.69	40647.59
	14034.86	28764.72	33047.59	37589.13	40661.60
[40693 23	50187.44 6	53442 95 733 ⁷	77 70 86038 57	3 104386.17

40693.23	50187.44	63442.95	73377.70	86038.53	104386.17
40958.52	50220.13	63452.51	74867.94	88941.40	104497.60
40975.38	50256.07	63478.01	75098.92	89352.25	104550.84
41051.62	50339.48	63503.17	75224.73	89384.28	110108.43

41075.53	50426.56	64104.04	75327.29	89877.18	110259.70
42202.31	50506.30	64130.48	78221.56	89957.09	110497.09
42216.14	50592.99	64165.54	78374.02	90046.89	110826.47
42242.61	50664.19	64185.34	78474.34	90941.27	110864.91
42294.83	50819.23	64256.17	79157.03	91056.25	111049.78
42356.05	50826.36	64382.96	79352.11	91178.79	111186.99
42404.03	50941.73	64409.07	80373.90	91364.72	111222.60
42503.87	50973.86	64474.74	81641.38	91579.33	111248.13
42527.27	51004.60	64543.46	81646.26	91637.46	111292.40
42641.81	51053.45	65694.34	81665.73	91694.01	111342.60
42667.99	51155.36	65706.46	81683.90	91732.50	111396.46
42739.75	51214.88	65768.33	81715.06	91817.02	111433.11
42783.84	51379.31	65797.34	81734.89	91878.84	111486.28
43365.42	51425.70	65840.68	81752.19	92192.73	111532.30
43505.03	51492.67	65938.87	81753.99	92277.44	111546.05
43536.89	51610.59	65957.62	81770.89	93029.78	111696.34
43593.71	51732.25	66145.17	81780.13	93047.08	111848.40
44677.60	60335.89	66221.83	81795.12	93124.95	
44723.91	60397.85	66667.14	81816.43	93197.35	
44754.24	60440.55	66686.77	81829.49	93235.16	
45552.61	60477.27	66746.38	81851.57	93466.46	
45620.85	60515.21	66780.50	81871.28	93578.40	
46104.33	60535.10	66865.28	81891.41	93949.75	
46130.40	60671.75	66883.22	81898.40	94001.34	
47032.30	60768.01	67032.89	81938.65	94084.52	
47054.82	60780.30	67121.01	81952.81	94134.60	
47077.63	60837.63	67559.29	81960.14	94330.63	
47572.99	60887.77	67587.41	81965.08	94466.03	
47738.52	60944.55	67644.49	81988.54	94526.00	
47849.24	60991.96	67717.40	82429.24	94546.24	
48664.51	61003.10	67760.20	82490.75	94706.67	
48759.57	61063.90	67886.69	82600.45	94896.27	
48813.30	61101.27	67986.68	82662.62	95044.02	
48861.41	61291.40	68349.33	82669.93	101844.79	
48876.08	61352.24	68372.70	83194.48	102092.73	
48914.27	61527.37	68463.25	83276.58	102648.67	
48936.26	61633.27	68563.15	84934.82	102778.44	
48945.30	61651.22	68678.32	85077.40	102842.18	
48967.62	61779.01	68798.76	85158.78	103505.68	
49030.14	63104.19	69514.77	85230.72	103563.58	
49130.19	63350.75	69634.06	85680.06	103596.39	
49248.26	63368.37	69768.95	85816.95	103746.31	
50103.75	63406.33	70487.49	85901.68	104264.42	
50138.32	63417.73	70778.16	86011.65	104287.80	

Table S13. CASSCF computed low-lying 21 sextets (in red) and 224 quartet states (in black) along with spin-orbit coupled states (in blue, Kramer doublets). All the values are reported here in cm⁻¹.

4-Dy						
0.0	24124.7	25882.7	33901.5	56686.5	76460.2	105331.2
8.6	24129.2	25941.7	33936.3	56692.1	76477.6	105360.3
124.6	24172.5	26005.4	33954.3	56738.3	76484.7	105481.0
272.7	24202.2	26073.8	34027.3	56772.9	76551.5	105497.4
285.3	24237.7	29043.4	34099.4	56775.8	76559.6	
330.9	24242.6	29044.3	34111.5	56830.0	76572.2	
360.6	24304.0	29109.7	34119.9	56846.4	76574.1	
466.2	24304.3	29125.3	34142.9	57012.4	77823.7	
675.4	24374.8	29131.1	36932.6	57021.6	77833.1	
824.0	24465.6	29136.7	36953.0	57084.7	77882.1	
859.0	24482.6	29251.3	37017.7	57098.9	78014.3	
7476.5	24510.7	29254.7	37032.3	57101.1	78131.0	
7610.3	24512.9	29306.4	37156.4	57102.1	78197.5	
7691.5	24586.5	29311.2	37174.2	57107.5	78265.3	
7757.0	24598.4	29313.1	37284.7	57139.0	84451.0	
7804.3	24640.6	29323.8	37308.0	57156.4	84569.7	
7849.2	24682.3	29328.6	37413.4	61503.4	84583.0	
7960.4	24690.0	29396.9	37438.1	61505.2	84942.5	
34239.6	24698.0	29397.5	37444.2	61522.1	84951.9	
34758.2	24702.0	30467.5	37526.6	61529.3	87251.0	
34777.6	24704.5	30475.6	42555.7	61579.4	87268.4	
	24732.9	30481.8	42880.2	61605.6	87338.2	
	24770.0	30494.4	42948.7	61614.6	87355.6	
	24779.7	30507.9	43069.8	61696.9	87392.7	
	24804.4	30520.2	43128.4	61708.4	87402.3	
	24841.0	30534.0	43165.2	61750.3	87420.2	
	24858.7	30550.6	43268.9	61753.7	87554.2	
	24874.0	30588.2	44276.9	61942.2	87566.5	
	24941.7	30598.0	44284.0	61943.3	87846.1	
	24989.2	30607.3	44418.3	62040.1	87848.6	
	25008.8	30694.6	44422.1	62040.3	87961.0	
	25019.7	30705.9	44480.2	66636.6	87964.3	
	25031.7	30706.6	44490.7	66648.9	97789.6	
	25035.5	30709.0	44503.8	67125.6	97925.3	
	25074.8	30712.9	44530.1	72273.7	97950.3	
	25134.2	30718.5	44535.4	72324.2	98073.4	
	25139.5	32331.6	44656.3	72672.5	98253.6	
	25221.6	32380.8	44676.7	72741.9	98472.0	
	25222.2	32533.9	44820.8	72813.0	98492.8	
	25721.0	32548.8	44823.6	76144.3	105051.6	
	25723.1	32579.2	56610.6	76437.9	105085.0	
	25816.0	33854.4	56625.1	76444.5	105178.5	
	25845.0	33860.1	56641.5	76447.4	105187.2	
	25863.2	33896.8	56651.3	76450.0	105241.5	

0.00	14063.57	28782.00	33970.48	37644.63
176.84	14863.36	28811.04	33976.71	37663.54

233.84	14877.44	28825.49	34001.89	37996.49
309.02	15337.55	28852.92	34023.48	38029.45
392.36	24396.55	28934.53	34071.37	38056.09
469.32	24464.79	29348.97	34101.03	38123.34
552.22	24557.94	29359.28	34116.10	38138.07
682.11	24647.18	29416.79	34142.97	38192.59
3123.74	24849.90	29445.78	34153.07	38205.29
3181.75	26539.85	29517.15	34164.08	38353.85
3358.63	26683 77	29539.62	34192.85	38368 67
3403.98	26726.84	29561 55	34215.97	38402 71
3442 59	26786.63	29568 22	34273.10	38413.65
3472.46	26844 91	29582 32	34278.06	38520.28
3501 79	26893.08	30310 56	34305 13	38660 51
5410.99	26906 56	30397 20	34314 65	38731 15
5426.80	26940.91	30511 19	34327 28	38755.67
5567.07	27108 74	30534.65	34345 93	38868 18
5632.88	27100.74	30581.68	35346.90	38879 32
5679 50	27127.33	30588.88	35356.95	38898.60
5716.94	2718/ 38	31/00 06	35304.03	38906.46
7136.29	27104.38	31550 0/	35116 73	38933.05
7164.24	27222.40	31566.82	35/188 73	38952 53
7301.46	27300.10	31582 18	35550.75	30015 28
7355 13	27430.37	31623.00	35677 17	30087 57
7333.13	27474.04	31652.20	35740.06	30505 65
8485.62	27404.22	21666.60	35775.08	39595.05
8500 43	27545.49	21608 70	25852.24	39399.21
8657 31	27023.29	31098.79	35000 74	396/3.17
8775 20	27750.70	31857.02	35024 70	39640.71
0453.20	27750.70	21875.65	35924.70	39049.71
9435.50	27739.30	21000 28	36002.41	39000.90
9021.15	27/94.00	31909.30	30231.37	39725.71
9032.32	27903.43	21078 12	36208.33	39733.80
9003.44	27963.23	22106.82	36291.47	20755 41
9085.57	20201.33	32100.82	26020 52	20847 21
9740.08	20279.11	32129.02	26040 18	20070 62
9604.75	28327.00	32104.01	30949.10	390/0.02
9019.03	28401.00	32175.00	37019.75	39903.98
11012.02	20440.72	32201.10	27253.55	39934.20
11012.02	20472.09	32232.00	37373.74	39973.33
11091.30	20401.00	32293.22	37402.20	40412.20
11113.27	28520.30	32314.01	37407.22	40433.04
11144.00	20330.21	32323.94	37477.17	40311.42
11139.10	28500 72	32370.73	37500.24	40300.93
12044.20	20399.72	32410.13	37522.67	40364.64
12733.00	20032.39	32102.33	37523.33	40303.33
12/90.10	20073.71	22043.03 27866 61	27510 71	40000.70
12013.32	20700.00	32000.01	37567 71	40610.30
12900.00	20/17.17	32934.10	37603.80	40672 58
1 1 1 1 1 1 1 7 7	- 40/07.17			$=$ $- \tau (0 / 4) ()$

40702.60	50201.20	63464.34	73398.87	86066.95	104409.05
40968.71	50238.33	63472.49	74880.77	88963.62	104527.67
40990.21	50274.03	63500.30	75118.99	89380.67	104584.30
41061.85	50352.73	63523.52	75261.01	89407.38	110133.09
41090.47	50447.49	64122.47	75346.91	89905.91	110292.72
42216.97	50517.33	64150.33	78239.32	89979.44	110535.75
42229.11	50614.86	64186.58	78400.38	90075.37	110846.63
42264.48	50680.57	64206.01	78498.66	90974.06	110899.32
42307.35	50825.54	64277.57	79177.63	91070.49	111081.54
42358.20	50842.49	64399.88	79377.31	91208.38	111209.85
42421.18	50947.26	64430.22	80399.80	91399.32	111258.54
42518.32	50995.18	64495.27	81664.28	91611.08	111280.09
42546.55	51019.45	64566.22	81668.98	91658.17	111333.42
42653 39	51071.15	65715 30	81691.88	91731 39	111375 16
42680 77	51167.18	65727 17	81708.88	91752.95	111427 74
42750 17	51236.91	65789.87	81741 38	91846 75	111460 53
42796.02	51386.89	65811 34	81760.61	91885.46	111509.64
43383 17	51448 98	65866.82	81771.63	92225.02	111566.91
43517.02	51510.68	65952.62	81777 51	92306.96	111577 98
43551 57	51618 47	65966 30	81794 81	93061.05	111731 13
43603.83	51746.25	66168 11	81804 48	93073.02	111889 10
44691 82	60350.64	66243.91	81820.54	93148.28	111009.10
44737 29	60415.63	66690.65	81839 35	93205.86	
44768 33	60457.83	66705 52	81853 58	93263.58	
45567.04	60497.06	66762.24	81871 18	93498.83	
45636.02	60534 18	66805 51	81894 78	93612.80	
46118.96	60557.99	66881 57	81917 75	93982.46	
46144 57	60686 73	66891.89	81924 93	94024 43	
47046.11	60783.92	67056.08	81960.08	94102.79	
47068.42	60799.51	67143.21	81977.49	94152.05	
47090 78	60860.02	67582 74	81983.09	94362.42	
47589.90	60906.43	67605.40	81988.49	94500.74	
47753.25	60965.52	67666.21	82012.63	94554.29	
47863.69	61006.99	67743.48	82449.49	94576.98	
48679.22	61028.80	67761.23	82513.34	94712.42	
48766.69	61070.93	67910.00	82625.74	94925.67	
48828.49	61120.00	68008.84	82688.28	95075.32	
48883.12	61314.68	68370.39	82696.28	101871.92	
48891.56	61375.90	68395.02	83216.16	102117.66	
48928.79	61543.65	68489.87	83301.05	102679.99	
48951.42	61652.36	68564.75	84961.50	102806.50	
48965.63	61670.10	68701.86	85101.23	102869.09	
48986.60	61799.06	68820.52	85177.47	103532.52	
49043.26	63115.59	69529.24	85259.58	103600.70	
49140.04	63374.08	69652.76	85699.95	103625.89	
49265.48	63389.36	69790.23	85842.35	103770.70	
50108.65	63424.51	70504.74	85925.90	104293.32	
50159.58	63437.95	70806.63	86039.27	104315.87	

5-Dy 0.0 24225.8 26622.4 34373.9 56841.5 76703.5 105897.7 34431.9 76709.7 105902.4 18.2 24247.1 26705.7 56967.2 26850.4 739.3 24463.0 34548.3 56980.0 76736.2 106049.7 845.5 24492.0 26885.0 34570.9 57048.9 76753.5 106189.6 76768.2 931.6 24554.5 29339.6 34617.9 57119.5 77069.7 995.8 24606.3 29395.8 34657.6 57331.2 24647.7 29538.2 34684.4 57388.9 77079.5 1295.6 1356.4 24660.1 29551.4 34712.6 57394.0 77805.4 24740.4 29617.5 57433.9 78103.7 1509.9 37174.1 24841.5 29647.4 37269.3 57503.0 78491.3 1760.7 1799.9 24859.3 29710.4 37401.4 57578.8 78550.8 7973.4 24877.4 29739.5 37480.7 57688.3 78605.6 8233.2 24933.1 29754.6 37634.1 57947.6 78716.3 8280.6 24946.1 29766.4 37738.0 57988.2 78890.8 8445.1 25009.0 29823.6 37786.5 58015.0 84334.7 8538.7 25030.1 29831.8 37909.6 58023.9 84450.1 8618.1 25055.5 29985.2 37961.2 61630.9 84805.1 25134.5 30003.8 8719.7 38053.7 61632.6 85686.2 30053.0 38230.4 34228.3 25141.8 61784.9 85708.4 35311.5 25173.2 30994.1 38293.7 61787.6 87208.5 42538.1 35814.0 25242.4 31013.5 61880.7 87218.0 25270.6 31018.8 43308.3 61934.8 87414.3 25283.3 31029.4 43349.3 61939.4 87419.9 61974.6 25324.7 31085.8 43627.0 87567.9 25353.6 31103.3 43690.9 62018.2 87619.0 25460.1 31114.7 43773.8 62026.5 87730.7 25467.6 31178.0 43911.6 62040.7 87758.2 25492.1 31199.7 44437.4 62276.7 87836.2 25508.7 31204.4 44438.3 62278.0 88005.8 25543.9 31235.9 44543.1 63054.5 88011.7 25567.5 31310.4 44622.8 63057.0 89005.1 25638.6 31343.1 44733.2 66432.6 89013.6 25669.4 31344.9 44885.2 66889.2 97403.6 31346.4 45041.4 67967.2 97715.8 25731.2 25765.8 31349.9 45226.4 72062.9 97923.9 25831.0 31366.3 45247.3 72173.1 98013.2 25848.9 32812.2 45329.9 73049.2 98209.5 25873.1 32814.9 45351.3 73411.7 99150.2 25878.6 32963.2 45512.6 73496.7 99277.5 26017.4 33061.5 45517.5 76555.4 104970.6 26091.3 33137.9 56412.7 76558.7 104986.4 26366.5 34243.2 56440.6 76647.0 105148.4

Table S14. CASSCF computed low-lying 21 sextets (in red) and 224 quartet states (in black) along with spin-orbit coupled states (in blue, Kramer doublets). All the values are reported here in cm⁻¹.

	26	5398.3	3425	2.9	56725.6	76666.3	105	462.6		
	26	588.4	3433	2.7	56730.8	76669.2	105	543.0		
0.00		1 472	2.5(0270.02	24242	- 7	20	0050 01	
0.00		14/3	5.30 5.20		293/0.93	34343.	D / D 1		238.31	
483.01		1549	5.29		29438.33	34398.	81		550.42 114.50	
898.30		1553	1.29		29458.51	34437.	83		6414.50	
993.99		1598	2.75		.9486.71	34459.	90	38	5446.54	
1157.38		2481	6.31	2	29514.23	34526.42		38524.41		
1229.84		2484	1.38	2	9902.12	34557	34	38	3594.38	
1331.67		2495	5.60	2	29948.94	34571.0	09	38	3623.62	
1608.07		2506	5.65	29976.87		34605.50		38694.67		
3312.02		2540	9.36	30095.98		34644.20		38735.64		
3704.24		2676	0.20	3	0117.78	34658.	15	38	3773.96	
3895.88		2689	3.64	30144.90		34706.	34706.12		38785.91	
4013.41		2691	3.20	30182.72		34736.36		38890.23		
4108.06		2708	9.55	30222.45		34814.	11	38918.68		
4248.96		27246.34		30238.51		34840.27		39038.15		
4436.35		2730	2.75	3	0455.12	34885.	11	39	0107.35	
5803.34		2740	7.36	3	0870.32	34910.	78	39	0139.33	
5920.85		2746	5.41	3	1019.44	34939.	13	39	258.12	
6044.41		2756	5.65	3	1045.35	35031.	82	39	0312.67	
6221.74		2761	3.76	3	1120.62	35689.	39	39	331.72	
6401.40		2769	8.74	3	1237.33	35729.	00	39	345.45	
6633.47		2772	7.93	3	1891.36	35786.	56	39	395.28	
7567.55		2778	8.63	3	1898.09	35804.	95	39	428.58	
7660.53		2780	6.89	3	1918.66	35885.2	20	39	9458.07	
7810.25		2787	3.37	3	2002.72	36077.:	56	39	555.59	
8005.10		2790	3.04	3	2013.04	36136.	61	39	695.03	
8299.74		2797	1.15	3	2034.93	36163.	90	40	043.64	
8920.96		2806	0.32	3	2105.18	36293.	79	40	051.84	
9017.36		2809	2.15	3	2117.88	36315.	90	40	057.32	
9243.56		2814	4.50	3	2215.88	36457.:	53	40	0110.85	
9593.84		2819	7.34	3	2268.10	36477.	60	40	0140.25	
10020.68		2826	1.20	3	2311.48	36516.4	41	40	0167.72	
10117.33		2838	4.80	3	2365.57	36631.	79	40	0177.88	
10201.28		2844	3.40	3	2384.15	36696.	94	40	0193.17	
10323.42		2852	8.75	3	2468.11	36796.	03	40	227.50	
10359.18		2854	2.81	3	2518.35	37206.	62	40	285.21	
10403.45		2866	1.47	3	2575.17	37381.	76	40	361.00	
10529.67		2871	0.12	3	2623.20	37420.	13	40	393.66	
10576.18		2871	9.47	3	2672.24	37525.	68	40	419.98	
10645.21		2879	0.19	3	2757.25	37732.	91	40	458.39	
11641.70		2885	2.84	3	2774.16	37813.	70	40	510.40	
11717.70		2895	1.89	3	2867.81	37902.2	23	40	809.76	
11756.28		2896	4.96	3	2880.20	37924.	77	40	979.55	
11787.92		2908	4.58	3	2950.20	37948.	79	41	053.52	
11868.53		2910	4.82	3	3027.26	37977.	83	41	081.06	
13237.11		2914	0.17	3	3123.26	37998.	91	41	102.57	

13397.23		29198.5	7	33166	.87	38	036.62		41116.11		
13442.18	29220.23		3	33286.09		38044.13		41137.52			
13482.05	13482.05 29256.1		1	33478.42		38051.56		41150.53			
14547.33	14547.33 29273.4		1	33560	.81	38	107.77	107.77		41187.73	
14688.74		29284.9	1	33640	.92	38	141.28		41217.15		
41250.65	5	50487.22	6	3862.09	7368	34.94	86576.92	2	104535.95		
41373.32	5	50642.87	6	3897.27	7465	53.71	86670.94	1	104698.05		
41536.23	5	50705.88	6	4022.20	7537	8.39	89018.18	3	104940.50		
41548.26	5	50846.51	6	4044.29	7569	93.51	89465.60)	105086.22		
41636.10	5	50971.09	6	4431.98	7601	7.78	89752.43	3	109964.59		
42592.69	5	51038.95	6	4504.79	7825	57.20	90158.27	7	110442.73		
42646.47	5	51072.58	6	4571.14	7859	7.22	90359.11	l	110609.47		
42668.39	5	51110.81	6	4663.88	7892	25.10	90419.28	3	111003.31		
42743.40	5	51213.65	6	4698.01	7930	0.49	90937.15	5	111054.38		
42784.17	5	51235.27	6	4802.22	7981	2.89	91298.47	7	111105.48		
42819.06	5	51364.13	6	4906.26	8083	37.27	91478.04	1	111147.48		
42949.62		51397.50	6	4983.87	8158	30.01	91585.91	L	111295.62		
43069.82		51449.65	6	5144.89	8177	9.27	91714.25	5	111325.39		
43160.22		51486.94	6	5794.59	8182	28.45	91854.96	5	111435.22		
43219.43		51636.01	6	5925.07	8185	57.99	91947.59)	111645.78		
43299.72		51717.76	6	6035.40	8192	26.15	92068.87	7	111701.01		
43482.77	5	51822.40	6	6103.62	8193	35.94	92144.16	5	111805.14		
43836.02	5	51912.25	6	6152.38	8196	6.20	92197.49)	111956.00		
43931.86	5	52064.63	6	6185.75	8198	35.05	92454.76	5	112085.68		
44115.32	5	52298.66	6	6247.74	8199	98.35	92881.92	2	112205.30		
44164.49	5	52351.64	6	6531.97	8200	08.78	93105.42	2	112331.29		
45151.19	6	50365.15	6	6817.49	8203	30.97	93285.46	5	112908.43		
45183.68	6	50602.23	6	6943.18	8204	6.97	93358.28	3			
45296.37	6	50726.99	6	7041.12	8207	2.42	93401.56	5			
45892.43	6	50744.13	6	7087.44	8209	97.06	93523.43	3			
46140.26	6	50809.24	6	7121.49	8214	1.09	93781.22	2			
46589.33	6	50874.08	6	7163.51	8218	88.88	93861.71	L			
46612.02	6	60932.86	6	7256.49	8221	9.45	94099.78	3			
47364.44	6	60953.69	6	7414.94	8225	0.12	94236.33	3			
47411.11	6	51029.30	6	7736.99	8232	27.67	94353.04	1			
47578.11	6	61172.68	6	7868.30	8237	8.97	94449.32	2			
48064.75	6	61219.99	6	7951.31	8243	51.21	94586.64	1			
48149.41	6	61372.15	6	/999.65	8245	2.28	94615.91	L			
48573.18	6	61406.79	6	8014.11	8275	3.60	94780.53	3			
48902.90	6	61471.58	6	8080.19	8290	3.88	94847.97	/			
48970.62		01529.38	6	8234.54	8308	32.06	95083.19)			
49014.25		01597.10	6	8530.68	8320	06.35	95440.34	ł			
49122.65	6	01636.56	6	8686.90	8333	3.92	95981.96)			
49214.12	6	01744.22	6	8773.90	8340	15.73	101545.2	7			
49305.34	6	51897.80	6	8803.22	8363	51.14	102155.2	1			
49321.13		52145.78	6	8900.51	8507	5.97	102489.1	4			
49521.86	6	52206.70	6	8973.24	8527	4.55	102804.2	4			

49546.99	62270.34	69509.96	85386.37	103033.81	
49741.79	63047.87	69654.16	85793.36	103415.28	
49818.05	63733.03	69711.79	85875.94	103542.69	
49907.44	63777.21	70203.08	86151.18	103950.83	
50241.86	63790.59	70775.15	86173.94	104036.16	
50371.00	63794.02	71605.52	86576.92	104143.16	

Figure S10. EDS spectrum of **1-Y(Dy)**. The spectrum was analysed by FESEM model JSM 7200F with FEG source.

References

- P. Kalita, N. Ahmed, A. K. Bar, S. Dey, A. Jana, G. Rajaraman, J.-P. Sutter and V. Chandrasekhar, *Inorg. Chem.*, 2020, **59**, 6603-6612.
- A. K. Bar, P. Kalita, J.-P. Sutter and V. Chandrasekhar, *Inorg. Chem.*, 2018, 57, 2398-2401.