# **Electronic supplementary information (ESI)**

## Construction of direct Z-scheme CeO<sub>2</sub>/UiO-66-NH<sub>2</sub> heterojunction

## with boosting photocatalytic organic pollutants degradation and H<sub>2</sub>

### evolution performance

Heling Zhang,<sup>a,#</sup> Yuqi Wan,<sup>b,#</sup> Simin Shang,<sup>a</sup> Qingrogn Cheng,<sup>a,\*</sup> Zhiquan Pan

a School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
b Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 99907, PR China

Corresponding authors:

\*(Q.C.) E-mail: <u>chengqr383121@sina.com</u> #These authors contributed equally to this work.

> Total number of pages: 4 Total number of Tables: 1 Total number of Figures: 3

#### Characterization

The powder X-ray diffraction (PXRD) pattern was recorded on the Bruker D8 Advance X-ray diffractometer (Cu K $\alpha$ ,  $\lambda = 1.54056$  nm), in the range between 10° and 80° with a scanning rate of 5° min<sup>-1</sup> at 40 kV accelerating voltage and 40 mA current. Fourier transformed infrared spectroscopy (FT-IR) in the wavelength range of  $4000 \sim$ 400 cm<sup>-1</sup> (KBr tablet) was performed by Nicolet 6700 spectrometer. The morphology and structure of  $CeO_2$  monomer, UiO-66-NH<sub>2</sub> and  $CU_{0.50}$  were observed with a scanning electron microscope (Zeiss GeminiSEM 300) under the acceleration voltage of 15 kV. The transmission electron microscope (TEM) images were measured using JEOL JEM-2100F microscope at 200 kV. X-ray photoelectron spectroscopy (XPS) measurements were performed on a Themo Fisher ESCALAB XI+ spectrometer and using Mg Ka radiation as the nonmonochromatized source (hv=1253.6eV). The electronic binding energy (BE) of the elements was corrected based on C1s (284.6 eV). Optical properties were analyzed by using UV-vis diffuse reflectance spectra (DRS, Shimadzu UV 2600) and wavelengths ranging from 200 nm to 800 nm. The photoelectrochemical properties of all prepared materials were tested using a CHI 660E electrochemical workstation (Chenhua Company). The electron spin resonance (ESR) spectrum was measured by using a Bruker EPR A 300-10/12 spectrometer to tracing the activated species. The total organic carbon (TOC) removal of TC was determined on a total organic carbon analyzer (Shimadu TOC-L CPN).



Figure S1 C, O, Zr, and Ce EDX mapping of CU<sub>0.50</sub>.



**Figure S2** Stability test of CeO<sub>2</sub>/UiO-66-NH<sub>2</sub> for photocatalytic degradation activity; the inset shows the XRD contrast image.



Figure S3 (a) Photocatalytic degradation of DCP over different materials; (b) pseudo-first-order kinetics curves of the photocatalytic degradation over different materials.



Figure S4 TOC removal of TC over  $CU_{0.50}$  under sunlight illumination.



Figure S5 (a) UV-Vis spectra for tetracycline sewage degraded by  $CU_{0.50}$  under sunlight illumination; (b) The actual degradation diagram of  $CU_{0.50}$  in sewage sample containing tetracycline.

| Catalyst/mg                                  | V(mL)/C                 | Light source  | Time                                  | Result | TOF      | Dof       |
|----------------------------------------------|-------------------------|---------------|---------------------------------------|--------|----------|-----------|
|                                              | $_{0}(mg \cdot L^{-1})$ | (λ>420nm)     | $(\lambda > 420 \text{nm})$ (min) (%) |        | 101      | Kei.      |
| CeO <sub>2</sub> /UiO-66-NH <sub>2</sub> /20 | 50/20                   | 500 W Xe lamp | 60                                    | 91.5   | 0.000765 | This work |
| $BiVO_4/g-C_3N_4/50$                         | 100/10                  | 250 W Xe lamp | 60                                    | 72.3   | 0.000241 | [1]       |
| Ag <sub>3</sub> PO <sub>4</sub> /MMO/50      | 50/40                   | 500 W Xe lamp | 90                                    | 96.0   | 0.000427 | [2]       |
| $\alpha\text{-}Fe_2O_3/g\text{-}C_3N_4/20$   | 50/20                   | 500 W Xe lamp | 80                                    | 99.1   | 0.000619 | [3]       |

TOF is calculated according to an equation:

$$TOF = \frac{C_{-60} \times V_{TC}}{m_{\text{catalyst}} \times t} \times t$$

Table S3 Comparison of the photocatalytic H<sub>2</sub> evolution rates over different photocatalysts.

| Dhotoostalysta                           | Irrigation                            | Sacrificial aconta     | Activity                                    | Ref.      |
|------------------------------------------|---------------------------------------|------------------------|---------------------------------------------|-----------|
| Filotocatarysts                          | IIIgation                             | Sacrificial agents     | $\mu$ mol • g <sup>-1</sup> h <sup>-1</sup> |           |
| CeO <sub>2</sub> /UiO-66-NH <sub>2</sub> | Visible light                         | $Na_2SO_3$ and $Na_2S$ | 5662.1                                      | This work |
| $CeO_2/g-C_3N_4-6$                       | Visible light                         | $Na_2SO_3$ and $Na_2S$ | 1240.9                                      | [4]       |
| N-ZnO/g-C <sub>3</sub> N <sub>4</sub>    | Visible light                         | methanol               | 152.7                                       | [5]       |
| $SnO_2/g-C_3N_4$                         | Light( $\lambda \ge 320 \text{ nm}$ ) | methanol               | 1254                                        | [6]       |
| U6N-NiO-2                                | Visible light                         | TEOA                   | 2561.32                                     | [7]       |

### References

[1] Yan M, Zhu F, Gu W *et al.* Construction of nitrogen-doped graphene quantum dots-BiVO<sub>4</sub>/g- $C_3N_4$  Z-scheme photocatalyst and enhanced photocatalytic degradation of antibiotics under visible light. RSC Advances 2016; 6:61162-61174.<u>https://doi.org/10.1039/c6ra07589d</u>.

[2] Chen C, Zeng H, Yi M *et al.* In-situ growth of Ag<sub>3</sub>PO<sub>4</sub> on calcined Zn-Al layered double hydroxides for enhanced photocatalytic degradation of tetracycline under simulated solar light irradiation and toxicity assessment. Applied Catalysis B: Environmental 2019; 252:47-54.<u>https://doi.org/10.1016/j.apcatb.2019.03.083</u>.

[3] Wang S, Teng Z, Xu Y *et al.* Defect as the essential factor in engineering carbon-nitride-based visible-light-driven Z-scheme photocatalyst. Applied Catalysis B: Environmental 2020; 260:118145-118187.https://doi.org/10.1016/j.apcatb.2019.118145.

[4] Zhao W, She T, Zhang J *et al.* A novel Z-scheme  $CeO_2/g-C_3N_4$  heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism. Journal of Materials Science & Technology 2021; 85:18-29.https://doi.org/10.1016/j.jmst.2020.12.064.

[5] Liu Y, Liu H, Zhou H *et al.* A Z-scheme mechanism of N-ZnO/g-C<sub>3</sub>N<sub>4</sub> for enhanced H<sub>2</sub> evolution and photocatalytic degradation. Applied Surface Science 2019; 466:133-140.<u>https://doi.org/10.1016/j.apsusc.2018.10.027</u>.

[6] Ismael M, Elhaddad E, Wark M. Construction of  $SnO_2/g-C_3N_4$  composite photocatalyst with enhanced interfacial charge separation and high efficiency for hydrogen production and Rhodamine B degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022; 638.<u>https://doi.org/10.1016/j.colsurfa.2022.128288</u>.

[7] Shen CC, Liu YN, Wang X *et al.* Boosting visible-light photocatalytic H<sub>2</sub> evolution via UiO-66-NH<sub>2</sub> octahedrons decorated with ultrasmall NiO nanoparticles. Dalton Trans 2018; 47:11705-11712.<u>https://doi.org/10.1039/c8dt02681e</u>.