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Experimental part.
Anion exchange reaction.

Synthesis of NiFe-SO, LDH.

Sodium sulphate (0.25 M) was dissolved in 50 mL of a 1:1 (v/v) ethanol/water mixture
with magnetic stirring at 65 °C and under argon atmosphere. After 30 min, 50 mg of LDH
NiFe-Cl were added. The temperature was set at 50 °C, and the reaction was kept for 48
h. Finally, the mixture was filtered, washed with Milli-Q water and EtOH, and dried in
vacuum.

Synthesis of NiFe-ES LDH.

Sodium ethyl sulphate (ES; 7.5 mM) was dissolved in 50 mL of a 1:1 (v/v) ethanol/water
mixture. Then, 50 mg of NiFe—-Cl LDH were added, and the reaction was maintained for
48 h at room temperature under Ar atmosphere and magnetic stirring. Finally, the final
mixture was filtered, and the yellow powder was washed with Milli-Q water and EtOH
several times and dried during 24 h in vacuum.

Synthesis of NiFe-OS LDH.

Sodium octyl sulphate (0OS; 7.5 mM) was dissolved in 50 mL of a 1:1 (v/v) ethanol/water
mixture. Then, 30 mg of NiFe—Cl LDH were added, and the reaction was maintained for
48 h at room temperature under Ar atmosphere and magnetic stirring. Finally, the final
mixture was filtered, and the yellow powder was washed with Milli-Q water and EtOH
several times and dried during 24 h in vacuum.

Synthesis of NiFe-DS LDH.

Sodium dodecyl sulphate (DS; 0.1 M) was dissolved in 50 mL of a 1:1 (v/v) ethanol/water
mixture. Then, 200 mg of NiFe-Cl LDH were added, and the reaction was maintained for
12 h at room temperature under Ar atmosphere and magnetic stirring. Finally, the final
mixture was filtered, and the yellow powder was washed with Milli-Q water and EtOH
several times and dried during 24 h in vacuum.

Synthesis of NiFe-HDS LDH.

Sodium hexadecyl sulphate (HDS; 2.5 mM) was dissolved in 50 mL of a 1:1 (v/v)
ethanol/water mixture. Then, 50 mg of NiFe-Cl LDH were added, and the reaction was
maintained for 12 h at room temperature under Ar atmosphere and magnetic stirring.
Finally, the final mixture was filtered, and the yellow powder was washed with Milli-Q
water and EtOH several times and dried during 24 h in vacuum.

Synthesis of NiFe-ODS LDH.

Sodium octadecyl sulphate (ODS; 0.01 M) was dissolved in 50 mL of a 1:1 (v/v)
ethanol/water mixture. Then, 200 mg of NiFe-Cl LDH were added, and the reaction was
maintained for 12 h at room temperature under Ar atmosphere and magnetic stirring.
Finally, the final mixture was filtered, and the yellow powder was washed with Milli-Q
water and EtOH several times and dried during 24 h in vacuum.
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Figure S1. (A) XRPD diffractograms highlighting the main basal reflections and (B) IR spectra of
the NiFe-LDH family.

LDH phases were confirmed via XRPD pattern, highlighting the main basal reflections that can
be found in hydrotalcite-like materials (JCPDS 22-700).! The main (003), (006) and (009) peaks
are related to the basal space of the LDH, hence dependent on the size of the interlayer anion.
These peaks exhibit a shift towards lower 2-8 values as long as the length of the interlayer anion
rises, indicative of a larger interlayer space.? At the same time, when the length of the interlayer
surfactant rises, the intensity of these peaks increases due to a greater ordering in the c axis
direction corresponding to a higher number of tail to tail interactions, which favours the
stabilization of the system.3# For the pristine NiFe-Cl, we observe a basal space of around 8.0 A,
in good agreement with that found in the literature.? For the longest interlayer distance (NiFe-
ODS) the basal space increases up to 31.6 A, confirming the successful anion exchange reaction.

ATR-FTIR spectroscopy also confirm the nature of the interlayer anion, highlighting the C-H
stretching bands at 2917 and 2845 cm™ and the sulphate bands at ca. 1190 and 1050 cm™ in the
surfactant-intercalated samples and at ca. 1100 cm™ in the sulphate sample.>



Figure S2. TEM images of the NiFe-LDHs. A) NiFe-Cl, B) NiFe-SO4, C) NiFe-ES, D) NiFe-0S, E) NiFe-
DS, F) NiFe-HDS and G) NiFe-ODS. Scale bar: 50 nm.



— NiFe-Cl
<O —— NiFe-SO,
e — NiFe-ES
o 30 — NiFe-0S 150-250 nm
Q@ — NiFe-DS
O —— NiFe-HDS
T — NiFe-ODS
®
O 20+t
Y
o
—
()
=
S 10t
=
0 1 b 1
10° ot 10% 10°

Particle size / nm

Figure S3. DLS measurements of NiFe-LDH family denoting the average size of the particles.
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Figure S4. Thermogravimetric analysis for the as-synthesized LDHs. A) NiFe-Cl, B) NiFe-SO4, C)
NiFe-ES, D) NiFe-0S, E) NiFe-DS, F) NiFe-HDS and G) NiFe-ODS.



Table S1. Elemental analysis of NiFe—LDH family and metallic ratio by EDX.

Cfound Hfound Nfound Sfound Ccalculated Hcalculated Ncalculated Scalculated Ratio

Ni/Fe
NiFe—Cl 324 332 065 0.17 3.29 3.21 0.00 0.00 2.73
NiFe-SO, 5.20 3.34 042 298 5.14 3.37 0.00 3.56 2.75
NiFe—ES 6.60 3.63 059 342 6.68 3.66 0.00 4.09 2.68
NiFe-0OS 13.01 434 056 3.84 13.09 4.53 0.00 4.36 2.85
NiFe-DS 19.26 530 034 385 1946 5.38 0.00 4.33 2.74
NiFe-HDS 23.49 5,57 035 3.52 23.70 5.87 0.00 3.95 2.81
NiFe—ODS 27.44 6.33 032 345 2701 6.73 0.00 3.65 2.86

Sample

Note: the calculated data correspond to the estimated molecular formulas.
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Figure S5. Magnetic properties of the NiFe-SO, sample. (A) xm vs. T with an external applied field
of 1000 Oe. The inset represents the thermal dependence of T and the fitting of the x ' to a
Curie-Weiss law; (B) FC/ZFC with an external applied field of 100 Oe. (C) Hysteresis cycle at 2 K.
The inset shows a zoom of the low field region; (D) frequency dependence with the temperature
for the out-of-phase (xv") signals at 10, 110, 330, 1000, 3000 and 100000 Hz.
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Figure S6. Magnetic properties of the NiFe-ES sample. (A) xu vs. T with an external applied field
of 1000 Oe. The inset represents the thermal dependence of T and the fitting of the x' to a
Curie—Weiss law; (B) FC/ZFC with an external applied field of 100 Oe. (C) Hysteresis cycle at 2 K.
The inset shows a zoom of the low field region; (D) frequency dependence with the temperature
for the out-of-phase (xv") signals at 10, 110, 330, 1000, 3000 and 100000 Hz.
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Figure S7. Magnetic properties of the NiFe-OS sample. (A) xM vs. T with an external applied field
of 1000 Oe. The inset represents the thermal dependence of xM-T and the fitting of the xyM-1 to
a Curie—Weiss law; (B) FC/ZFC with an external applied field of 100 Oe. (C) Hysteresis cycle at 2
K. The inset shows a zoom of the low field region; (D) frequency dependence with the
temperature for the out-of-phase (xM") signals at 10, 110, 330, 1000, 3000 and 100000 Hz.
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Figure S8. Magnetic properties of the NiFe-DS sample. (A) xM vs. T with an external applied field
of 1000 Oe. The inset represents the thermal dependence of xM-T and the fitting of the xM-1 to
a Curie—Weiss law; (B) FC/ZFC with an external applied field of 100 Oe. (C) Hysteresis cycle at 2
K. The inset shows a zoom of the low field region; (D) frequency dependence with the
temperature for the out-of-phase (xM") signals at 10, 110, 330, 1000, 3000 and 100000 Hz.
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Figure S9. Magnetic properties of the NiFe-HDS sample. (A) xM vs. T with an external applied
field of 1000 Oe. The inset represents the thermal dependence of xM-T and the fitting of the
XM-1 to a Curie—Weiss law; (B) FC/ZFC with an external applied field of 100 Oe. (C) Hysteresis
cycle at 2 K. The inset shows a zoom of the low field region; (D) frequency dependence with the
temperature for the out-of-phase (xM") signals at 10, 110, 330, 1000, 3000 and 100000 Hz.
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Figure S10. Magnetic properties of the NiFe-ODS sample. (A) xu vs. T with an external applied
field of 1000 Oe. The inset represents the thermal dependence of xT and the fitting of the xu
! to a Curie—-Weiss law; (B) FC/ZFC with an external applied field of 100 Oe. (C) Hysteresis cycle
at 2 K. The inset shows a zoom of the low field region; (D) frequency dependence with the
temperature for the out-of-phase (xu") signals at 10, 110, 330, 1000, 3000 and 100000 Hz.



Table S2. Probability P(m) of finding m Ni" nearest neighbours of Fe'" according to the binomial
distribution (eq.[1])

compound y P(6) P(5) P(4) P(3) P(2) P(m<1)

NiFe-Cl 2.7 0.152 0.337 0.310 0.152 0.042 <0.007

NiFe-ODS 2.8 0.164 0.346 0.304 0.142 0.038 <0.006

Table S3. Sextet relative areas /(m) expected for a completely random cation distribution

compound 1(6) 1(5) 1(4) I[(m<3) -

NiFe-Cl 15% 34% 31% 20% -

NiFe-ODS 16% 35% 30% 19%




Table S4. Estimated parameters from the Mdssbauer spectra taken at different temperatures

Ni:Fe
sample q T IS QS Bh¢ I (%) <Bnp>
NiFe - Cl 2.7 295 K 0.35 0.51 - 100

NiFe - Cl 7.8A 4K 0.48 0.44 52.9 55

0.47 0.30 50.3 21 50.7
0.47 0.17 47.4 15
0.45 0.12 44.0 9

NiFe - ODS 2.8 295K 0.35 0.52 - 100

NiFe - ODS 32A 4K 0.48 0.39 524 41

0.49 0.20 49.8 26 49.5
0.47 0.17 47.0 20
0.47 0.11 433 13

d interlamellar spacing

IS (mm/s) isomer shift relative to metallic a-Fe at 295 K; QS (mm/s) average quadrupole splitting
estimated for distribution of quadrupole doublets; € (mm/s) quadrupole shift estimated for
magnetic sextets. B¢ (tesla) magnetic hyperfine field; / relative areas. Estimated errors
<0.02 mm/s for IS, QS, €, < 0.2 T for B¢ and <2% for I.
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