Supporting Information

Frustrated Lewis Pair-Ligated Tetrelenes

Alvaro A. Omaña,^a Brandon L. Frenette,^a Eike Dornsiepen,^a Ryo Kobayashi,^b Michael J. Ferguson,^a Takeaki Iwamoto,^b and Eric Rivard^{a,*}

^aDepartment of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2 ^bDepartment of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan

Table of Contents

1.	Single crystal X-ray structure determinations	S2
2.	NMR Spectra	S7
3.	Density functional theory (DFT) computations	S41
4.	References	S45

1. Single crystal X-ray structure determinations

Appropriate X-ray quality crystals were coated with a small amount of hydrocarbon oil (Paratone-N) and removed from the glovebox in a vial. Crystals were quickly mounted onto a glass fiber and placed in a low temperature stream of nitrogen on the X-ray diffractometer. All data was collected using a Bruker APEX II CCD detector/D8 or PLATFORM diffractometer using Mo Kα (0.71073 Å) or Cu Kα (1.54178 Å) radiation, with the crystals cooled to -80 °C or -100 °C. For $[{}^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BMes_{2}\{CH_{2}\}]$ (13), 45 second exposures were needed to collect high quality crystallographic data. The data was corrected for absorption through Gaussian integration from the indexing of crystal faces.^{S1} Crystal structures were solved using intrinsic phasing (SHELXT)^{S2} and refined using SHELXL-2014.^{S3} For $[PB\{CH_2\}]$ (7), $[{(THF)_3Li}^{i}PrP(C_6H_4)BCy_2\{CH_2\}]$ (8), [ⁱPr₂PCH₂(C₆H₄)Li(OEt₂)]₂ (10), ^{CH2}PB and [ⁱPr₂PCH₂(C₆H₄)BMes₂{CH₂}] (13), Olex2 was used as a Graphical User Interface (GUI).⁵⁴ The assignment of hydrogen atom positions are based on the sp^2 - or sp^3 -hybridization geometries of their attached carbon atoms and were given thermal parameters 20 % greater than those of their parent atoms. Molecular structures are shown with thermal ellipsoids at a 30% probability and have been generated using SHELXP. All crystallographic information files (.cifs) were deposited within the Cambridge Crystallographic Data Centre (CCDC) database.

Compound	5	[PB{AgOTf}] ₂	7
Formula	C ₂₄ H ₄₀ BBr ₂ PSi	C ₆₄ H ₉₆ Ag ₂ B ₂ F ₆ O ₆ P ₂ S ₂	C ₂₅ H ₄₂ BP
Formula weight	558.25	1438.82	384.36
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	P21/c (No. 14)	Р <u>1</u> (No. 2)	P2₁/c (No. 14)
Crystal dimensions (mm)	0.15×0.12×0.06	0.17×0.15×0.04	0.154×0.113×0.045
a (Å)	9.9653(2)	11.0509(3)	10.5854(3)
b (Å)	15.4219(4)	11.8386(3)	9.8043(2)
<i>c</i> (Å)	17.1801(4)	14.3836(4)	22.5734(5)
α (°)	90	99.1129(11)	90
β (°)	105.5652(13)	105.9672(11)	91.2950(10)
γ (°)	90	108.6188(9)	90
V (Å ³)	2586.70(10)	1650.69(8)	2342.12(10)
Z	4	1	4
ρ (g/cm³)	1.433	1.447	1.090
Abs coeff (mm ⁻¹)	5.053	6.350	1.058
T (°C)	-100	-100	-80
2θ _{max} (°)	140.41	148.16	147.81
Total data	13910	72300	88291
Unique data	4905 (0.0260)	6441 (0.0333)	4607 (0.0637)
Obs data $[I>2\sigma(I)]^a$	4172	6261	4070
Params	262	445 ^b	496 ^{c,d}
R ₁ [I>2σ(I)] ^{<i>a</i>}	0.0444 ^{<i>a</i>}	0.0263 ^b	0.0479 ^{c,d}
wR ₂ [all data] ^a	0.1394	0.0725	0.1356
Max/min Δρ (e ⁻ Å ⁻³)	1.441/-1.029	0.770/-0.521	0.87/-0.34

Table S1. X-ray crystallographic data for [PB{SiBr₂}] (5), [PB{AgOTf}]₂, and [PB{CH₂}] (7).

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|; wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{4})]^{1/2}.$

^bThe disordered cyclohexyl group (atoms C21A to C26A and C21B to C26B) were restrained to have approximately the same bond lengths by using the SHELXL **SADI** instruction on the following: B1–C21A and B1–C21B; all C–C distances. Additionally, the anisotropic displacement parameters were restrained by use of the SHELXL **SIMU** instruction. Finally, the disordered solvent toluene molecule was constrained to have an idealized phenyl group, the methyl carbon to *ipso*-carbon distance was restrained to be approximately 1.50 Å by use of a SHELXL **DFIX** instruction, and the angles about the ipso carbon atoms were restrained to be approximately 120°. Further, the anisotropic displacement parameters of carbon atoms of the major orientation of the toluene were restrained by use of the SHELXL **RIGU** instruction.

^cData were collected with the detector set at three different positions. Low-angle (detector $2\theta = -33^{\circ}$) data frames were collected using a scan time of 5 s, medium-angle (detector $2\theta = 75^{\circ}$) frames using a scan time of 5 s, and high-angle (detector $2\theta = 117^{\circ}$) frames using a scan time of 10 s.

^{*d*}Due to whole molecule disorder, molecule was split into two parts (using **PART** keywords); both refined anisotropically. **SIMU**, **RIGU** and **DELU** restraints were added, alongside **SAME** P1 > C25.

Compound	8	10∙Et ₂ O	^{CH2} PB
Formula	C ₃₄ H ₅₉ BLiO ₃ P	C ₃₄ H _{56.34} Li ₂ O ₂ P ₂	C ₂₅ H ₄₂ BP
Formula weight	564.53	572.95	384.36
Crystal system	Orthorhombic	Monoclinic	Monoclinic
Space group	P2 ₁ 2 ₁ 2 ₁ (No. 19)	P21/n	P21/c (No. 14)
Crystal dimensions (mm)	0.235×0.173×0.132	0.174×0.147×0.061	0.065×0.164×0.253
a (Å)	9.9428(10)	12.7778(6)	10.7112(4)
b (Å)	16.8849(17)	18.1916(8)	11.6101(4)
<i>c</i> (Å)	20.512(2)	15.8870(7)	18.4751(6)
α (°)	90	90	90
β (°)	90	95.1640(10)	90.8680(10)
γ (°)	90	90	90
V (Å ³)	3443.6(6)	3676.1(3)	2297.28(14)
Z	4	4	4
ρ (g/cm³)	1.089	1.043	1.111
Abs coeff (mm ⁻¹)	0.110	0.144	0.127
T (°C)	-80	-100	-100
2θ _{max} (°)	102.76	102.9	107.6
Total data	28282	56424	26118
Unique data	6531 (0.0730)	7023 (0.0715)	4835 (0.0397)
Obs data $[I>2\sigma(I)]^a$	4451	7023	3947
Params	410 ^c	393 ^b	248
$R_1 [I > 2\sigma(I)]^a$	0.0579 ^d	0.0607 ^b	0.0377
wR ₂ [all data] ^a	0.1595	0.1769 ^b	0.0997
Max/min Δρ (e ⁻ Å ⁻³)	0.42/-0.26	0.74/-0.48	0.31/-0.22

Table S2. X-ray crystallographic data for $[{(THF)_3Li}^{i}PrP(C_6H_4)BCy_2{CH_2}]$ (8), $[{}^{i}Pr_2PCH_2(C_6H_4)Li(Et_2O)]_2$ (10), and ${}^{CH2}PB$.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|; wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w (F_{o}^{4})]^{1/2}.$

^bThe disorder in the coordinated Et₂O solvent molecules for **10** could not be fully resolved by splitting into parts, as they are disordered over more than three locations. Thus, only **SIMU**, **RIGU**, **DELU** restraints were applied to the Et₂O molecules.

^cDue to disordered THF molecules, **RIGU**, **SADI** and **EADP** restraints were used for C23 to C26, C31 to C34.

^{*d*}Refined as an inversion twin: $I_c = (1-x)I_{s^+} + xI_{s^-}$. The Flack parameter (x) was determined to be 0.29(19); therefore, the absolute configuration of **9** cannot be conclusively determined and it must be considered a racemic mixture.

Compound	13
Formula	C ₃₂ H ₄₄ BP
Formula weight	470.45
Crystal system	Monoclinic
Space group	P21/n
Crystal dimensions (mm)	0.213×0.196×0.170
a (Å)	10.230(2)
b (Å)	19.008(4)
<i>c</i> (Å)	14.985(4)
α (°)	90
β (°)	102.935(4)
γ (°)	90
V (Å ³)	2840.0(12)
Z	4
ρ (g/cm³)	1.100
Abs coeff (mm ⁻¹)	0.114
T (°C)	-80
2θ _{max} (°)	104.4
Total data	22944
Unique data	5632 (0.0430)
Obs data [I>2 σ (I)] ^a	5632
Params	393 ^b
R ₁ [I>2σ(I)] ^a	0.0486
wR ₂ [all data] ^a	0.1226
Max/min Δρ (e⁻ Å⁻³)	0.39/-0.24

Table S3. X-ray crystallographic data for [^{*i*}Pr₂PCH₂(C₆H₄)BMes₂{CH₂}] (**13**):

 $\frac{Wax F (E - K)}{R_1} = \sum ||F_0| - |F_c|| / \sum |F_0|; wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^4)]^{1/2}.$

^bDisorder within one of the mesityl rings (C15 – C23) was modeled by splitting into two parts, and the site occupancies [*s.o.f.* 0.612(18)] were determined using an isotropic model and freely refined. Atom distances within the disordered mesityl ring were restrained to be approximately equal with the **SADI** command; displacement parameters were also restrained using the enhanced rigid bond restraint (**RIGU**).

2. NMR Spectra

Figure S1. ¹H NMR spectrum of [PB{SiBr₂}] (5) in C_6D_6 . Peaks labelled with an asterisk (*) are consistent with the literature data for IPr•SiBr₂.^{S5}

Figure S2. ¹H{³¹P} NMR spectrum of [PB{SiBr₂}] (**5**) in C₆D₆. Peaks labelled with an asterisk (*) are consistent with the literature data for IPr \bullet SiBr₂.⁵⁵

 145
 140
 135
 125
 120
 115
 110
 100
 95
 90
 85
 80
 75
 70
 65
 60
 55
 50
 45
 40
 35
 30
 25
 20
 15

 Chemical Shift (ppm)

 Figure S3. $^{13}C{^1H}$ NMR spectrum of [PB{SiBr₂}] (5) in C₆D₆.

Figure S4. ${}^{31}P{}^{1}H$ NMR spectrum of [PB{SiBr₂}] (5) in C₆D₆.

Figure S6. ²⁹Si $\{^{1}H\}$ NMR spectrum of [PB $\{SiBr_{2}\}$] (5) in C₆D₆.

-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 Chemical Shift (ppm) **Figure S11.** ${}^{19}F{}^{1}H$ NMR spectrum of [PB{AgOTf}]₂ in C₆D₆.

Figure S12. ${}^{1}H{}^{31}P{}$ NMR spectrum of [PB{CCl₂}] (6) in C₆D₆.

Figure S14. ${}^{31}P{}^{1}H$ NMR spectrum of [PB{CCl₂}] (6) in C₆D₆.

Figure S16. ¹H NMR spectrum of $[PB{CH_2}]$ (7) in C₆D₆.

Figure S17. ${}^{1}H{}^{31}P{}$ NMR spectrum of [PB{CH₂}] (7) in C₆D₆.

S16

Figure S21. ¹H NMR spectrum of [{(THF)₃Li}^{*i*}PrP(C₆H₄)BCy₂{CH₂}] (8) in C₆D₆.

Figure S22. ${}^{1}H{}^{31}P{}$ NMR spectrum of [{(THF)_{3}Li}'PrP(C_{6}H_{4})BCy_{2}{CH_{2}}] (8) in C_{6}D_{6}.

130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 Chemical Shift (ppm) Figure S23. ${}^{13}C{}^{1}H$ NMR spectrum of [{(THF)_3Li}'PrP(C_6H_4)BCy_2{CH_2}] (8) in C_6D_6.

Figure S24. ${}^{31}P{}^{1}H$ NMR spectrum of [{(THF)_{3}Li}^{*j*}PrP(C₆H₄)BCy₂{CH₂}] (8) in C₆D₆.

asterisk (*) are unknown.

Figure S28. ${}^{13}C{}^{1}H$ NMR spectrum of ['Pr(H)P(C₆H₄)BCy₂{CH₂}] (9) in C₆D₆.

S21

Figure S31. ¹H NMR spectrum of ^{*i*}Pr₂PCH₂(C₆H₄)Br in C₆D₆. Peaks labelled with an asterisk (*) are unknown; however, it is likely (^{*i*}Pr₂P)₂ since the ³¹P NMR of this sample (Figure S34; see below) shows an impurity consistent with the reported ³¹P data for (^{*i*}Pr₂P)₂.^{S6}

Figure S32. ¹H{³¹P} NMR spectrum of ^{*i*}Pr₂PCH₂(C₆H₄)Br in C₆D₆. Peaks labelled with an asterisk (*) are unknown; however, it is likely (^{*i*}Pr₂P)₂ since the ³¹P NMR of this sample (Figure S34; see below) shows an impurity consistent with the reported ³¹P data for (^{*i*}Pr₂P)₂.^{S6}

Figure S34. ³¹P{¹H} NMR spectrum of ${}^{i}Pr_{2}PCH_{2}(C_{6}H_{4})Br$ in C₆D₆. The ³¹P resonance at -12 ppm is consisted with the reported ³¹P data for $({}^{i}Pr_{2}P)_{2}$.^{S6}

Figure S35. ¹H NMR spectrum of $[^{i}Pr_2PCH_2(C_6H_4)Li(OEt_2)]_2$ (10) in C_6D_6 .

S25

Figure S40. ¹H NMR spectrum of ${}^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BCy_{2}$ (CH2PB) in C₆D₆.

140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 **Figure S42.** ${}^{13}C{}^{1}H$ NMR spectrum of ${}^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BCy_{2}$ (^{CH2}PB) in C₆D₆.

⁵⁰ 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -1! **Figure S43.** ${}^{31}P{}^{1}H$ NMR spectrum of ${}^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BCy_{2}$ (^{CH2}PB) in C₆D₆.

¹⁴⁵ ¹⁴⁰ ¹³⁵ ¹³⁰ ¹²⁵ ¹²⁰ ¹¹⁵ ¹¹⁰ ¹⁰⁵ ¹⁰⁰ ⁹⁵ ⁹⁰ ⁸⁵ ⁸⁰ ⁷⁵ ⁷⁰ ⁶⁵ ⁶⁰ ⁵⁵ ⁵⁰ ⁴⁵ ⁴⁰ ³⁵ ³⁰ ²⁵ ²⁰ ¹⁵ ¹⁵ ^{Chemical Shift (ppm)} **Figure S46.** ¹³C{¹H} NMR spectrum of ${}^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BMes_{2}$ (^{CH2}PB_{Mes}) in CDCl₃ collected at -40 °C.

Figure S48. ¹¹B{¹H} NMR spectrum of ^{*i*}Pr₂PCH₂(C₆H₄)BMes₂ (^{CH2}PB_{Mes}) in CDCl₃ collected at 25 °C.

Figure S52. ¹H{³¹P} NMR spectrum of [${}^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BMes_{2}{GeCl_{2}}$] (**11**) in CDCl₃ collected at - 40 °C.

40 °C.

Figure S54. ³¹P{¹H} NMR spectrum of [^{*i*}Pr₂PCH₂(C₆H₄)BMes₂{GeCl₂}] (**11**) in CDCl₃ collected at -40 °C. The ³¹P resonance near 28 ppm has been tentatively assigned as [^{*i*}Pr₂PCH₂(C₆H₄)BMes₂{HCl}] from protonolysis of ^{CH2}PB_{Mes}, since the peak appears as a doublet in the ³¹P NMR spectrum.

Figure S55. ¹¹B{¹H} NMR spectrum of $[{}^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BMes_{2}{GeCl_{2}}]$ (**11**) in CDCl₃ collected at - 40 °C.

-10

-30

-50

-70

-90

-110

-130

-15

10

50

130

110

90

70

50

30

Figure S56. ¹H NMR spectrum of $[^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BMes_{2}\{GeCl_{2}\}]$ (**11**) in $C_{6}D_{6}$ at 25 °C. Note that the integration of the Mes-CH₃ (m, 1.87-2.19) is often undercalculated at 16H (instead of 18H) due to significant broadening.

-8.55

Figure S58. ¹¹B{¹H} NMR spectrum of $[{}^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BMes_{2}{GeCl_{2}}]$ (**11**) in $C_{6}D_{6}$ at 25 °C.

0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 Chemical Shift (ppm) **Figure S59.** ¹H NMR spectrum of the crude reaction mixture from the combination of $[^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BMes_{2}\{GeCl_{2}\}]$ (**11**) with **PB** in $C_{6}D_{6}$. The ¹H NMR data is not consistent with that of free **11**, **PB**, $[PB\{GeCl_{2}\}]^{S7}$ or ^{CH2}**PB**_{Mes}, thus an equilibrium mixture is likely present.

Figure S60. ³¹P{¹H} NMR spectrum of the crude reaction mixture from the combination of $[{}^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BMes_{2}\{GeCl_{2}\}]$ (**11**) with **PB** in C₆D₆.

-50.22

Figure S61. ¹¹B{¹H} NMR spectrum of the crude reaction mixture from the combination of $[^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BMes_{2}\{GeCl_{2}\}]$ (11) with PB in C₆D₆.

Figure S62. ¹H NMR spectrum of [^{*i*}Pr₂PCH₂(C₆H₄)BMes₂{CH₂}] (13) in CDCl₃ collected at -60 °C.

Figure S64. ³¹P{¹H} NMR spectrum of [^{*i*}Pr₂PCH₂(C₆H₄)BMes₂{CH₂}] (**13**) in CDCl₃ collected at 25 °C. The ³¹P resonance labelled with an asterisk (*) is a minor [^{*i*}Pr₂PCH₂(C₆H₄)BMes₂{MeOTf}] impurity, the identity of which was confirmed upon multinuclear (¹H, ³¹P{¹H}, ¹¹B{¹H}, ¹⁹F{¹H}) NMR spectroscopy tracking of the reaction mixture between ^{CH2}PB_{Mes} and MeOTf over time.

Figure S66. ³¹P{¹H} NMR spectrum of the crude reaction mixture from the combination of $[^{i}Pr_2PCH_2(C_6H_4)BMes_2\{CH_2\}]$ (**13**) with "BuLi in C₆D₆. Peaks labelled with an asterisk (*) are unknown.

Figure S67. ¹H NMR spectrum of the crude reaction mixture from the combination of $[^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BMes_{2}\{CH_{2}\}]$ (**13**) with "BuLi in $C_{6}D_{6}$. ¹H integration was performed between the ArH resonance at 7.78 ppm (pseudo-t, for **13**) and 7.54 ppm (d, for unknown new product), showing 31.5 % of **13** in the reaction mixture. To obtain accurate ¹H NMR integrations, all peaks were linearly corrected to account for baseline fluctuations.

3. Density functional theory (DFT) computations

Structure geometries were optimized in the gas phase using the M06-2X^{S8} functional and the ccpVTZ^{S9} basis set using Gaussian16.^{S10} Frequency analyses were performed to confirm the presence of no imaginary frequencies for ground states. Optimized geometries and orbitals were rendered using VMD.^{S11} NBO analysis was performed at the M06-2X/cc-pVTZ level of theory using the NBO 6.0 program.^{S12}

To obtain an estimate of the collective P–E and B–E bond strengths within our FLP-stabilized SiCl₂, SiBr₂, and GeCl₂ adducts, computations were performed on the release of singlet^{S13} EX₂ (E = Si, Ge; X = Cl, Br) from **1**, **2** and **5** in the gas phase.[†] The free energy of activation (ΔG^{\dagger}) associated with EX₂ loss cannot be discussed at this time since transition states for P–E/E–B bond scission could not be located. For both **1** and **5**, the propensity to release singlet^{S13} SiX₂ (X = Cl for **1**, Br for **5**) and generate free **PB** appears to be identical in magnitude and endoergic (ΔG) by 20.3 kcal mol⁻¹, respectively, in the gas phase (computations at a M06-2X/cc-pVTZ level of theory; Eqn. S1). It is expected that the P–Ge and Ge–B bonds in [PB{GeCl₂}] (**2**) should be easier to break versus the P–Si and Si–B linkages in [PB{SiCl₂}] (**1**). Accordingly, the free energy penalty (ΔG) associated with the release of singlet GeCl₂ from [PB{GeCl₂}] (**2**) was computed to be lower than the loss of SiX₂ from either **1** or **5** by 8.4 kcal mol⁻¹ (Eqn. S2).

All attempts to optimize [PB{C}] in a singlet ground state (at the M06-2X/cc-pVTZ level of theory) converged into a 1,3-cyclohexyl shift product, [^{*i*}Pr₂P(C₆H₄)BCy{CCy}]; however, by using the optimized geometry of the triplet [PB{C}] and running a frequency optimization as a singlet, the total energy of the singlet [PB{C}] complex was obtained. The triplet ground state of [PB{C}] could be optimized and the triplet structure of [PB{C}] is included below (Fig. S69). The triplet [PB{C}] structure is lower in Gibbs free energy by 16.8 kcal mol⁻¹ than the singlet [PB{C}] structure (Figs. S69 and S70). The 1,3-cyclohexyl shift product, [^{*i*}Pr₂P(C₆H₄)BCy{CCy}], is lower in free energy by 76.7 kcal mol⁻¹ compared to the triplet [PB{C}] structure (Figs. S68 and S70). Both the *cis*- and *trans*- structures of [PB{C=C}PB] were computationally optimized as singlet ground states at a M06-2X/cc-pVTZ level of theory. Energetically, the *trans*-[PB{C=C}PB] structure was favored by - 20.9 kcal mol⁻¹ in Gibbs free energy over the *cis*- [PB{C=C}PB] structure (Figs. S71).

Figure S68. Optimized [${}^{i}Pr_{2}P(C_{6}H_{4})BCy\{CCy\}$] structure (at the M06-2X/cc-pVTZ level of theory) with selected bond lengths (Å), Wiberg bond indices (WBI) and natural charges (Q_{NPA}).

Figure S69. Optimized triplet ground state of [PB{C}] (at the M06-2X/cc-pVTZ level of theory) with selected bond lengths (Å), Wiberg bond indices (WBI) and natural charges (Q_{NPA}).

Figure S70. Optimized structures of [PB{C}] (singlet and triplet states) and $[{}^{i}Pr_{2}P(C_{6}H_{4})BCy\{CCy\}$ (at the M06-2X/cc-pVTZ level of theory) on a Gibbs free energy diagram (kcal mol⁻¹).

Figure S71. Optimized structures of [PB{C=C}PB] (singlet ground state; at the M06-2X/cc-pVTZ level of theory) on a Gibbs free energy diagram (kcal mol⁻¹). All hydrogens have been removed for clarity.

The enthalpy and Gibbs free energy of the dimerization reaction (shown as Eqn. S3 above) were computed to be -115.1 and -89.6 kcal/mol, respectively.

Figure S72. Optimized $[{}^{i}Pr_{2}PCH_{2}(C_{6}H_{4})BMes_{2}\{CH_{2}\}]$ structure (at the M06-2X/cc-pVTZ level of theory) with selected bond lengths (Å), Wiberg bond indices (WBI) and natural charges (Q_{NPA}).

4. References

S1. R. H. Blessing, Acta Cryst., 1995, A51, 33–38.

S2. G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.

S3. G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3–8.

S4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.

S5. A. C. Filippou, O. Chernov and G. Schnakenburg, *Angew. Chem., Int. Ed.*, 2009, **48**, 5687–5690. S6. S. Aime, R. K. Harris, E. M. McVicker, and M. Fild, *J. Chem. Soc., Dalton Trans.*, 1976, 2144–2153.

S7. A. A. Omaña, R. K. Green, R. Kobayashi, Y. He, E. R. Antoniuk, M. J. Ferguson, Y. Zhou, J. G. C. Veinot, T. Iwamoto, A. Brown and E. Rivard, *Angew. Chem., Int. Ed.*, 2021, **60**, 228–231.

S8. Y. Shao and D. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.

S9. T. H. Dunning Jr., J. Chem. Phys., 1989, 90, 1007–1023.

S10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16*, Revision A. 03, Gaussian Inc., Wallingford CT, 2016.

S11. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics, 1996, 14, 33–38.

S12. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold, *NBO 6.0*, Theoretical Chemistry Institute, University of Wisconsin, Madison WI, 2013.

S13. (*a*) J. L. Berkowitz, J. P. Green, H. Cho and R. Ruscic, *J. Chem. Phys.*, 1987, **86**, 1235–1248; (*b*) Y. Apeloig, R. Pauncz, M. Karni, R. West, W. Steiner and D. Chapman, *Organometallics*, 2003, **22**, 3250–3256; (*c*) S. K. Shin, W. A. Goddard III and J. L. Beauchamp, *J. Phys. Chem.*, 1990, **94**, 6963–6969; (*d*) J.-C. Barthelat, B. S. Roch, G. Trinquier and J. Satgé, *J. Am. Chem. Soc.*, 1980, **102**, 4080–4085.