Supporting Information

Process Coupling of CO₂ Reduction and 5-HMF Oxidation Mediated by Defectriched Layered Double Hydroxides

Jingjing Fan^{1,#}, Yin Zhao^{1,#}, Qian Wang¹*, Mingyu Gao¹, Xintao Li¹, Dianqing Li^{1,2}, Junting Feng^{1,2,*}

1 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China

2 Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, 100029, Beijing, China

* Corresponding author

wq@mail.buct.edu.cn (Qian Wang); fengjt@mail.buct.edu.cn (Junting Feng)

These authors contributed equally to this work

Figure S1 SEM images of the nanoreactors (A) ZnNiFe-LDHs, (B) ZnNiFe-LDHs-E1h, (C) ZnNiFe-LDHs-E2h, (D) ZnNiFe-LDHs-E3h

Figure S2. Low temperature N₂ adsorption and desorption curves of nanoreactor before and after etching (A) ZnNiFe-LDHs, (B) ZnNiFe-LDHs-E1h, (C) ZnNiFe-LDHs-E2h, (D) ZnNiFe-LDHs-E3h

Figure S3. CO time performance plot

Figure S4. FTIR spectra of different carbon-labeled ZnNiFe-LDHs

Figure S5. (A) XRD patterns of ZnNiFe-LDHs-E3h before and after the reaction; (B) SEM photo of ZnNiFe-LDHs-E3h before the reaction; (C) SEM photo of ZnNiFe-LDHs-E3h after the reaction

Figure S6. Before and after nanoreactors reaction (A) FTIR spectra of ZnNiFe-LDHs, (B) CO₃²⁻ peak area comparison of ZnNiFe-LDHs, (C) FTIR spectra of ZnNiFe-LDHs-E3h, (D) CO₃²⁻ peak area comparison of ZnNiFe-LDHs-E3h

Figure S7. FTIR spectra of 5-HMF adsorbed by the nanoreactor

	Peak position ^a (°)		Calculated parameters (nm)				
	003	110	d ₀₀₃ ^b	d ₁₁₀ Ե	a ^c	c ^d	v ^e
ZnNiFe-LDHs	11.6	59.9	0.76	0.15	0.31	2.29	9.8
ZnNiFe-LDHs-E1h	11.6	60.0	0.76	0.15	0.31	2.29	14.1
ZnNiFe-LDHs-E2h	11.6	60.0	0.76	0.15	0.31	2.29	14.7
ZnNiFe-LDHs-E3h	11.6	60.0	0.76	0.15	0.31	2.29	14.4

Table S1. Characteristic structural and size data of the LDHs determined by XRD in solid state

a Obtained from the XRD spectra.

b $n\lambda=2dsin\theta_B$, where n is an integer (in general it is 1), λ is the wavelength of the laser ($\lambda=0.154$ nm), d is the lattice spacing and θ_B is the Bragg angle.

c Shortest distance between two cations in the layer and $a=2d_{110}$.

d The width of a unit cell and $c=3d_{003}$.

e v=K λ / β cos θ_B , K is the shape factor (0.89 is used in the calculation) and β is the line broadening at the full widths at half maximum in radian obtained by applying Gaussian fits to the peaks.

Table S2. The results of metal content analysis of ZnNiFe-LDHs and ZnNiFe-LDHs-EXh

Nanoreactors	Zn ²⁺ (mm ol/g)	Ni ²⁺ (mmol/g)	Fe ³⁺ (mmo l/g)	Zn:Ni:Fe	Zn%
ZnNiFe-LDHs	$1.00{\pm}0.07$	3.44±0.10	2.61±0.07	0.38:1.31:1	14.2±0.5
ZnNiFe-LDHs-E1h	$0.20{\pm}0.02$	$3.49{\pm}0.06$	2.51 ± 0.03	0.08:1.39:1	3.2±0.3
ZnNiFe-LDHs-E2h	0.17 ± 0.02	3.48 ± 0.03	2.64 ± 0.02	0.06:1.31:1	2.7 ± 0.3
ZnNiFe-LDHs-E3h	0.10 ± 0.01	3.73 ± 0.02	2.62±0.01	0.04:1.42:1	1.5±0.2

Table S3. Interlayer hydroxyl and carbonate weight loss statistics

Nanoreactors	H ₂ O (%)	CO ₃ ²⁻ (%)
ZnNiFe-LDHs	15.56	17.03
ZnNiFe-LDHs-E1h	14.70	17.05
ZnNiFe-LDHs-E2h	13.87	17.45
ZnNiFe-LDHs-E3h	11.98	17.00

	5-HMF	Selectivity (%)			Carbon	1.1./1	
Nanoreactor	conversion(%)	DFF	FFCA	FDCA	balance(%)	hole/electron	
ZnNiFe-LDHs	8.25	75.41	15.37	7.57	98.35	1.24	
ZnNiFe-LDHs-E1h	14.61	68.14	17.76	10.97	96.87	1.32	
ZnNiFe-LDHs-E2h	11.59	68.11	20.69	8.55	97.35	1.27	
ZnNiFe-LDHs-E3h	24.83	70.73	15.87	8.61	95.21	1.31	

Table S4. 5-HMF conversion, product selectivity and photogenerated hole/electron ratio

Table S5. Comparison of the reaction conditions and performances with other catalysts for photocatalytic CO_2 reduction.

Samples	Light Source	Substrate	Reduced Products (μmol·h ⁻¹ ·g ⁻¹)	Oxidized Product (µmol·h ^{-1.} g ⁻¹)	Selectivity (%)	Ref.
CdS/BCN	300 W Xe lamp	CO ₂ , H ₂ O/CH ₃ C N; TEOA	CO: 250	O ₂	CO:100	1
One-Unit- Cell ZnIn ₂ S ₄	300 W Xe lamp (AM 1.5G)	CO ₂ , H ₂ O	CO: 33.2	O ₂	CO:100	2
0.5ZIS/TiO ₂	300 W Xe lamp	CO_2, H_2O	CO: 23.35 CH ₄ : 6.19	O ₂	CO: 79.0	3
Co- rGO/C ₃ N ₄	300 W Xe lamp (λ > 420 nm)	CO ₂ , H ₂ O,TEOA , [Ru(bpy) ₃] Cl ₂ ·6H ₂ O	CO: 25	O ₂	CO:100	4
CuCoAl- LDHs-E-60	300 W Xe lamp	CO3 ²⁻ - LDHs, 5- HMF, CH ₃ CN	CO:18.3	DFF: 10.4 FFCA: 5.5 FDCA:1.7	CO:>99.0 DFF: 59.1	5
Pt/MgFe- LDHs-15%	300 W Xe lamp	CO3 ² LDHs, glycerol	CO: 15.8 CH ₄ : 43.6 H ₂ :26.9	DHA: 147.5 LA: 128.2	CO: 26.6 CH ₄ : 73.4 DHA: 53.5 LA: 46.5	6
ZnNiFe-	300 W Xe	CO ₃ ²	CO: 19.1	DFF: 13.8	CO: >99.0	This

LDHs-E3h	lamp	LDHs, 5-	FFCA: 3.1	DFF: 74.3	Work
		HMF,	FDCA:1.7		
		CH ₃ CN			

References:

(1) Zhou, M.; Wang, S.; Yang, P.; Huang, C.; Wang, X. Boron Carbon Nitride Semiconductors Decorated with CdS Nanoparticles for Photocatalytic Reduction of CO2. *ACS Catalysis* **2018**, *8* (6), 4928-4936.

(2) Jiao, X.; Chen, Z.; Li, X.; Sun, Y.; Gao, S.; Yan, W.; Wang, C.; Zhang, Q.; Lin, Y.; Luo, Y.; et al. Defect-Mediated Electron–Hole Separation in One-Unit-Cell ZnIn2S4 Layers for Boosted Solar-Driven CO2 Reduction. *Journal of the American Chemical Society* **2017**, *139* (22), 7586-7594.

(3) She, H.; Wang, Y.; Zhou, H.; Li, Y.; Wang, L.; Huang, J.; Wang, Q. Preparation of Zn3In2S6/TiO2 for Enhanced CO2 Photocatalytic Reduction Activity Via Z-scheme Electron Transfer. *ChemCatChem* **2019**, *11* (2), 753-759.

(4) Jiang, J.; Duan, D.; Ma, J.; Jiang, Y.; Long, R.; Gao, C.; Xiong, Y. Van der waals heterostructures by single cobalt sites-anchored graphene and g-C3N4 nanosheets for photocatalytic syngas production with tunable CO/H2 ratio. *Applied Catalysis B: Environmental* **2021**, *295*, 120261.

(51) Fan, J.; Yue, X.; Liu, Y.; Li, D.; Feng, J. An integration system derived from LDHs for CO2 direct capture and photocatalytic coupling reaction. *Chem Catalysis* **2022**, *2* (3), 531-549.

(6) Gao, M.; Fan, J.; Fan, J.; Wang, Q.; Li, D.; Feng, J. Process coupling of CO2 and glycerol comprehensive utilization based on anionic 2D nanomaterial. *AIChE Journal* **2022**, e17976.