Plasmon Au/K-doped defective graphitic carbon nitride for enhanced hydrogen production

Lu Chen^a*, Xiyao Liu^a, Deling Wang^a, Yuzhou Xia^a, Guiyang Yan^a, Xueyan Huang^b*, Xuxu Wang^c*

^a Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China

^b School of Automobile, Fujian Chuanzheng Communications College, Fuzhou, 350002, PR China

^c State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou

350002, PR China

 $AQY = \frac{\text{Number of reacted electrons}}{\text{Number of incident photons}} \times 100\%$

$$=\frac{2 \times C \times N_{A}}{S \times P \times t \times \frac{\lambda}{h \times c}} \times 100\%$$

Where, C is the H₂ production amount (mol) per hour; N_A is the Avogadro constant $(6.02 \times 10^{23} \text{ mol}^{-1})$; S is the irradiation area (18 cm²); P is the monochromatic light intensity (W·cm⁻²); t is the light irradiation time (3600 s); λ is the wavelength of the monochromatic light (nm); h is the Plank constant ($6.626 \times 10^{-34} \text{ J} \cdot \text{s}$); c is the speed of light $(3 \times 10^8 \text{ m} \cdot \text{s}^{-1})$.

Table S1 the AQY of Au/KCNx

λ (monochromatic	$P(W \cdot cm^{-2})$	C (mmol×10 ⁻³)	AQY
light)			
420 nm	9.113	0.1333	12.8
450 nm	8.679	0.054	5.46
500 nm	4.758	0.00759	1.2
550 nm	17.28	0.01	0.4

Fig S1: N_2 adsorption-desorption isotherms of pristine g-C₃N₄, KCNx and Au/KCNx

samples

Sample	Theoretical proportion (%)	Actual proportion (%)
Au/KCNx	3	2.3

Fig. S2. XPS survey spectra of the as-prepared pristine g-C₃N₄ and Au/KCNx samples.

Fig. S3 Digital photographs of the pristine $g-C_3N_4$, KCNx and Au/KCNx samples