Supporting Information

Multifaceted role of silver salts as ligand scavengers and different behavior of nickel and palladium complexes: Beyond halide abstraction

Ignacio Pérez-Ortega and Ana C. Albéniz*

IU CINQUIMA/Química Inorgánica. Universidad de Valladolid. 47071 Valladolid (Spain).

1. Experimental details.

- 1.1- General considerations
- 1.2- Synthesis of nickel(II) complexes

1.3- Synthesis of palladium(II) complexes

1.4- Study of the formation *in situ* of organometallic species starting from complexes 1, 2 and 4

1.5- Study of the formation *in situ* of organometallics species starting from complexes 7, 8 and 10

1.6- General procedure for the polymerization experiments with norbornene

- 2. Data for X-Ray molecular structure determinations
- 3. Selected NMR spectra of nickel(II) complexes
- 4. Selected NMR spectra of palladium(II) complexes
- 5. Selected NMR spectra and GPC chromatograms of polymers

6. References

1. Experimental details

1.1- General Considerations.

¹H, ¹³C{¹H}, ³¹P{¹H} and ¹⁹F NMR spectra were recorded on Bruker AV-400 or Agilent MR-500 spectrometers at the LTI-UVa Research Facilities. Chemical shifts (in δ units, ppm) were referenced to SiMe₄ (¹H and ¹³C), CFCl₃ (¹⁹F) and H₃PO₄ (85%, ³¹P) The spectroscopic data were recorded at 293 K unless otherwise noted. Homonuclear (¹H-COSY and ¹H-NOESY) and heteronuclear (¹H-¹³C HSQC and HMBC) experiments were used to help with the signal assignments. Size exclusion chromatography (SEC, also gel permeation chromatography, GPC) was carried out using a Waters SEC system on a three-column bed (Styragel 7.8x300 mm columns: 50-100000, 5000-500000 and 2000-4000000 Da) and a Waters 410 differential refractometer. SEC samples were run in CHCl₃ at 313 K and calibrated to polystyrene standards. Elemental analyses were carried out in a Carlo Erba 1108 microanalyser at the Vigo University, Spain or in a Thermo Fisher Sci. EA Flash 2000 microanalyser at the PCT, University of Burgos.

CH₂Cl₂ and THF were dried using a solvent purification system SPS PS-MD-5, toluene was dried with Na, distilled and stored over 4 Å molecular sieves. Acetone was dried using CaSO₄ and distilled. CD₂Cl₂ and CDCl₃ were dried using CaH₂ and distilled. All commercial reagents and solvents were used as received unless otherwise indicated.

All catalytic reactions were conducted under a N_2 atmosphere employing Schlenk techniques. A solution of norbornene was prepared dissolving the appropriate amount in dry CH₂Cl₂ (3.8 M). The solution was kept under N₂ at -35 °C and titrated by ¹H NMR with C₆H₃Br₃ as internal standard.

Norbornene, magnesium, AgBF₄, PPh₃, HBF₄(aq) (48 % wt.), HBF₄·Et₂O MeCOCH₂C(OH)Me₂, MeCOCH₂C(SMe)Me₂, 1-bromo-2-(trifluoromethyl)benzene and 1-iodo-2-(trifluoromethyl)benzene are commercially available and were purchased from Sigma-Aldrich, Acros Organics and Fluorochem. [NiBr₂(PPh₃)₂],¹ [Pd(PPh₃)₄],² and [PdCl₂(PPh₃)₂]³ were prepared according to the literature methods.

1.2- Synthesis of nickel(II) complexes.

Synthesis of [Ni(o-CF₃-C₆H₄)Br(PPh₃)₂] (1). Complex 1 was reported previously. We describe here a synthetic method following the Jamison procedure.^{1a} Magnesium turnings (0.16 g, 6.58 mmol) were placed in a round-bottom flask under N₂ and activated with an iodine crystal. The magnesium was suspended in 25 mL of dry THF and 1-bromo-2-(trifluoromethyl)benzene (0.46 mL, 3.36 mmol) was added. The suspension was heated to reflux for 1h. The initial colorless solution turns to a lightgrey suspension. In another Schlenk tube was placed [NiBr₂(PPh₃)₂] (2.5 g, 3.37 mmol) under N₂ and it was suspended in 10 mL of dry THF. The green suspension was cooled to 0 °C in an ice bath. The light-grey solution of the aryl Grignard reagent was transferred via cannula to the green suspension and it was stirred for 15 min at 0 °C. After this time, the greenish solution was evaporated to dryness and 10 mL of MeOH were added. The yellow solid generated was stirred for 10 min at room temperature. The solid was filtered off, washed with cold MeOH (2 x 10 mL) and air-dried (2.2 g, 81.5% yield.). ¹H NMR (499.73 MHz, δ , CD₂Cl₂): 7.56 (m, 12H, H_{meta}, H_{ortho} Ph PPh₃), 7.50 (d, J = 8, 1H, H⁶), 7.38 (m, 6H, H_{para} Ph PPh₃), 7.24 (m, 12H, H_{meta}, H_{ortho} Ph PPh₃), 6.60 (d, J = 8 Hz, 1H, H³), 6.47 (vt, J = 8 Hz, 1H, H⁴), 6.42 (vt, J = 7.6 Hz, 1H, H⁵). ¹³C{¹H} (125.67 MHz, δ , CD₂Cl₂): 153 (t, J_{C-P} = 34 Hz, C¹), 137.5 (C⁶), 135.4 (m, ²J_{C-F}) = 29 Hz, C²), 134.6, 127.6 (C_{meta}, C_{ortho}, Ph PPh₃), 131.7 (vt, J_{C-P} = 27 Hz, C^{ipso} PPh₃), 129.6 (C_{para} Ph PPh₃), 127.6 (C^5), 127.4 (q, ${}^{1}J_{C-F} = 273$ Hz, C^7), 127.3 (C^3), 121.6 (C^4). ¹⁹F NMR (470.17 MHz, δ , CD₂Cl₂): -58.8 (t, J_{P-F} = 6 Hz, CF₃). ³¹P{¹H} (202.31 MHz, δ , CD₂Cl₂): 20.1 (q, J_{P-F} = 5 Hz, 2P).

Synthesis of $[Ni(o-CF_3-C_6H_4)(OH_2)(PPh_3)_2](BF_4)$ (2). In a Schlenk tube the dimeric complex 4 (75 mg, 0.0776 mmol) and PPh₃ (41 mg, 0.156 mmol) were placed under N₂. The mixture was dissolved in 5 mL of dry CH₂Cl₂ and the orange solution was cooled to 243 K in an acetone bath for 10 min until constant temperature. Subsequently, a solution of HBF_{4(aq)} (25 µL, 0.194 mmol; 48 % wt) was added. Immediately, the

solution turned yellow and it was stirred for 20 min at 243 K. After this time, the yellow solution was evaporated to dryness. The residue was redissolved in 4 mL of CH₂Cl₂ and 12 mL of dry hexane were added inducing the formation of a yellow solid. The solid was decanted and the supernatant solution was transferred via cannula. The same process was repeated twice. The yellow solid was dried in vacuo (0.1 g, 77% yield). ¹H NMR (499.73 MHz, δ , 243 K, CD₂Cl₂): 7.52 (m, 6H, H_{para}, Ph PPh₃), 7.39 (m, 12H, H_{meta} Ph PPh₃), 7.29 (m, 12H, H_{ortho}, Ph PPh₃), 7.21 (d, 1H, J = 7.6, 1H, H⁶), 6.70 (vt, J = 7.6, 1H, H⁴), 6.61 (d, J = 7.6, 1H, H³), 6.58 (vt, J = 7.6, 1H, H⁵), 2.76 (s, 2H, OH₂). ¹³C{¹H} (125.67 MHz, δ , 243 K, CD₂Cl₂): 139.4 (t, J_{C-P} = 35 Hz, C¹), 136.3 (C⁶), 134.6 (q, ²J_{C-F} = 29 Hz, C²), 134 (C_{ortho}, Ph PPh₃), 129.1 (C_{meta}, Ph PPh₃), 131.3 (C_{para} Ph PPh₃), 126.4 (vt, J_{C-P} = 22 Hz, C^{ipso} PPh₃), 128.7 (C⁵), 128.5 (q, ¹J_{C-F} = 276 Hz, C⁷), 128.2 (C³), 123.10 (C⁴). ¹⁹F NMR (470.17 MHz, δ , 243 K, CD₂Cl₂): -59.7 (t, J_{P-F} = 6 Hz, CF₃), -150.7 (BF₄). ³¹P{¹H} (202.31 MHz, δ , 243 K, CD₂Cl₂): 18 (q, J_{P-F} = 6 Hz, 2P). Analysis calc. for C₄₃H₃₆BF₇OP₂Ni: C, 61.98; H, 4.35; found: C, 61.81; H, 4.42.

Synthesis of $[Ni(o-CF_3-C_6H_4)(\mu-OH)(PPh_3)]_2$ (4). Complex 4 was synthesized following a reported method for analogous complexes.⁴ In a 100 mL round-bottom flask complex 1 (1.86 g, 2.30 mmol) was dissolved in 28.5 mL of THF. KOH (2.6 g, 47 mmol) in pellets was grounded and added to the orange solution. In addition, 1 mL of H₂O was added and the mixture was stirred vigorously for 24 h at room temperature. After this time, the aqueous phase was removed and the organic solution was evaporated to dryness. The residue was redissolved in the minimal amount of THF and filtered off through a plot of Celite. The orange solution was evaporated to dryness. The residue was triturated with 5 mL of pentane and stirred for 30 min at room temperature inducing the formation of an orange solid. The solid was filtered off, washed with pentane (2 x 5 mL) and then air-dried (0.95 g, 89% yield).

In dry CDCl₃, complex **4** is a mixture of three isomers, resulting from the different arrangement of the phosphines (*cis* or *trans*) and CF₃ group (*syn* or *anti*) (Figure S1). By analogy to other hydroxo dimers,⁴ the isomers with the two OH with similar

chemical shifts (-4.0 ppm and -4.2 ppm in ¹H NMR, Figure S2) are assigned to the *trans*-4 isomers The two *cis* isomers are conformed by two OH groups with very different chemical shifts but a priory is not possible assigned to which isomer (*cis-anti*-4 or *cis-syn*-4) correspond each OH signal. Because of the higher steric hindrance in the isomer with the two CF₃ in *syn* disposition, we tentatively assigned the minor isomer to the *cis-syn*-4. The molecular structure of *cis-anti*-4 was determined by X-ray diffraction (see section 2).

Figure S1. Isomers for complex 4.

Figure S2. ¹H NMR spectrum of complex 4 in CDCl₃ at 298 K showing only the region of the OH groups.

4: ¹H NMR (499.73 MHz, δ , CDCl₃): 8.03, 7.94, 7.83 (d, ¹J_{H-H} = 8 Hz, H⁶, H^{6'}), 7.56-7.19 (m, PPh₃), 6.9, 6.8, 6.77 (d, ¹J_{H-H} = 8 Hz, H³, H^{3'}), 6.75-6.60 (m, H⁴, H^{4'}) 6.61 (m, H⁵, H⁵), -2.7 (s, 1H, OH, *cis-syn-*4), -2.33 (s, 1H, OH, *cis-anti-*4), -4 (s, 1H, OH, *transsyn/anti-*4), -4.2 (s, 1H, OH', *trans-syn/anti-*4), -6.1 (s, 1H, OH', *cis-anti-*5), -6.4 (s, 1H, OH', *cis-syn-*4). ¹³C{¹H} (125.67 MHz, δ , CDCl₃): 146.5 (C¹, C^{1'}), 138.8, 138.5 (C⁶, C^{6'}), 136.9 (C², C^{2'}), 133.9, 128 (Cortho, Cmeta Ph PPh₃), 129.91 (C_{ipso} Ph PPh₃), 128.06 (C_{para}, Ph PPh₃), 125.8 (q, ¹J_{C-F} = 273 Hz, C⁷, C^{7'}), 126.5 (C⁴, C^{4'}) 125.3 (C³, C^{3'}), 121.8 (C⁵, C^{5'}). ¹⁹F NMR (470.17 MHz, δ , CDCl₃): -57.5 (d, J_{P-F} = 5.3 Hz, CF₃ *trans-anti/syn-*4), -57.8 (d, J_{P-F} = 5.3 Hz, CF₃ *trans-anti/syn-*4), -57.9 (d, J_{P-F} = 5.3 Hz, CF₃, CF₃' *cis-* *anti*-4, *cis-syn*-4). ³¹P{¹H} NMR (202.31 MHz, δ , CDCl₃): 28.3 (m, 2P, *trans-anti*-4 + *trans-syn*-4), 28 (m, 2P, *cis-anti*-4), 27.7 (m, 2P, *cis-syn*-4). Analysis calc. for C₅₀H₄₀F₆O₂P₂Ni₂·C₄H₈O: C, 62.46; H, 4.60; found: C, 62.67; H, 4.19.

Synthesis of $[Ni(o-CF_3-C_6H_4)()(\kappa^2-O, S-MeCOCH_2C(SMe)Me_2)(PPh_3)](BF_4)$ (6). In an oven dry Schlenk tube complex 4 (150 mg, 0.155 mmol) was dissolved in 5 mL of dry CH₂Cl₂. The orange solution was cooled in an acetone bath at 243 K for 10 min until constant temperature. The ligand MeCOCH₂C(SMe)Me₂ (47 µL, 0.31 mmol) and HBF₄·Et₂O (42 µL, 0.31 mmol) were added. The solution turned from orange to yellow and it was stirred for 15 min at 243 K. After this time, the solution was evaporated to dryness and the residue was redissolved in 2 mL of CH₂Cl₂. 10 mL of hexane were added inducing the formation of a yellow solid. The solid was decanted and the supernatant solution was transferred via cannula. The same process was repeated twice. The yellow solid was vacuum dried (0.19 g, 87.7 % Yield). ¹H NMR (499.73 MHz, δ , CDCl₃): 7.6 (d, 1H, ¹J_{H-H} = 8 Hz, H⁶), 7.46 (m, 3H, H_{para} PPh₃), 7.37 (m, 12H, H_{meta}, H_{ortho} PPh₃), 6.99 (d, 1H, ¹J_{H-H} = 8 Hz, H³), 6.85 (m, 2H, H⁵, H⁴), 3.53 (d, 1H, ¹J_{H-H} = 21 Hz, H^{10}), 2.89 (d, 1H, ${}^{1}J_{H-H} = 21$ Hz, $H^{10'}$), 2.18 (s, 3H, SMe), 1.77 (s, 3H, H⁹). 1.5 (CH₃), 1.41 (CH₃). ¹³C{¹H} (125.758 MHz, δ , CDCl₃): 223.1 (C⁸), 135.4 (C⁶), 136.2 (C²), 133.7, 128.8, (Cortho, Cmeta, PPh₃), 131 (Cpara, C^{ipso}, PPh₃), 128.8, 123.8 (C⁵, C⁴), 127.7 (C³), 49.7 (C¹⁰), 40 (C¹¹), 33 (C⁹), 27.2 (CH₃), 27.8 (CH₃), 12.4 (SMe).* ¹⁹F NMR (470.17 MHz, δ , CDCl₃): -58.4 (d, J_{P-F} = 5.7 Hz, CF₃), -152 (BF₄⁻). ³¹P{¹H} NMR (202.31 MHz, δ, CDCl₃): 19.5 (m, 1P). Analysis calc. for C₃₂H₃₃BF₇OPSNi: C, 54.98; H, 4.76; found: C, 54.76; H, 4.78. $*C^1$ and C^7 could not be located.

1.3- Synthesis of palladium(II) complexes

Synthesis of [Pd(*o*-CF₃-C₆H₄)Br(PPh₃)₂] (7). Complex 7 was synthesized following a reported method for analogous complexes.⁵ In a Schlenk tube, [Pd(PPh₃)₄] (0.5 g, 0.432 mmol) was placed under N₂. The complex was dissolved in 8 mL of dry toluene. Subsequently, 1-bromo-2-(trifluoromethyl)benzene (1.2 mL, 8.81 mmol) was added. The light-yellow solution was stirred for 6 h at 100 °C. After this time, the solution was evaporated to dryness. Et₂O (10 mL) was added to the residue inducing the formation of a white solid. The solid was filtered off, washed with Et₂O (2 x 10 mL) and air-dried (0.33 g, 89.2% yield). ¹H NMR (499.73 MHz, δ , CD₂Cl₂): 7.49 (m, 12H, H_{meta}, H_{ortho} Ph PPh₃), 7.38 (t, 6H, ¹J_{H-H} = 7 Hz, H_{para} Ph PPh₃), 7.28 (m, 12H, H_{meta}, H_{ortho} Ph PPh₃), 7.38 (t, 6H, ¹J_{H-H} = 7 Hz, H_{para} Ph PPh₃), 7.28 (m, 12H, H_{meta}, H_{ortho} Ph PPh₃), 7.23 (d, ¹J_{H-H} = 8 Hz, 1H, H⁶), 6.75 (d, ¹J_{H-H} = 8 Hz, 1H, H³), 6.58 (t, ¹J_{H-H} = 8 Hz, 1H, H⁴), 6.47 (t, ¹J_{H-H} = 8 Hz, 1H, H⁵). ¹³C{¹H} (125.67 MHz, δ , CD₂Cl₂): 156.2 (C¹), 137.6 (C⁶), 132.2 (q, ²J_{C-F} = 27 Hz, C²), 134.7, 127.7 (C_{meta}, C_{ortho} Ph PPh₃), 131.2 (vt, J_{C-P} = 23 Hz, C^{ipso} PPh₃), 129.9 (C_{para} Ph PPh₃), 129.3 (C⁵), 127.3 (q, ¹J_{C-F} = 273 Hz, C⁷), 127 (C³), 122.5 (C⁴). ¹⁹F NMR (470.17 MHz, δ , CD₂Cl₂): -59.7 (t, J_{P-F} = 5 Hz, CF₃). ³¹P{¹H} (202.31 MHz, δ , CD₂Cl₂): 22.30 (q, J_{P-F} = 5 Hz).

Synthesis of $[Pd(o-CF_3-C_6H_4)(OH_2)(PPh_3)_2](BF_4)$ (8). In an oven-dried vial AgBF₄ (51 mg, 0.262 mmol) was placed under N₂. The solid was dissolved in 5 mL of dry toluene. In a Schlenk tube complex 7 (180 mg, 0.21 mmol) was dissolved in 3 mL of CH₂Cl₂. The vial and the Schlenk tube were cooled to 243 K during 10 min to ensure a constant temperature. The solution of AgBF₄ was transferred to the yellow solution of complex **6**. Immediately, a white solid (AgBr) appeared and the suspension was stirred for 15 min at 243 K. After this time, the solvent was evaporated to dryness. The residue was suspended in 2 mL of dry CH₂Cl₂ and the solution was transferred via cannula. *n*-Hexane (10 mL) was added to the clear yellow solution inducing the formation of a

white solid. The solid was decanted and the supernatant solution was transferred via cannula. The same process was repeated twice. The white solid was dried in vacuo (0.155 g, 84.2% yield). ¹H NMR (499.73 MHz, δ , 243 K, CD₂Cl₂): 7.5 (m, 6H, H_{para}, Ph PPh₃), 7.38 (m, 12H, H_{meta}/H_{ortho} Ph PPh₃), 7.25 (m, 12H, H_{meta}/H_{ortho} Ph PPh₃), 7.18 (d, J = 7.6, 1H, H⁶), 6.83 (vd, J = 7.6, 1H, H³), 6.8 (vt, J = 7.6, 1H, H⁴), 6.65 (t, J = 7.6, 1H, H⁵), 3.33 (s, 2H, OH₂). ¹³C{¹H} (125.67 MHz, δ , 243 K, CD₂Cl₂): 142.8 (C¹), 136.1 (C⁶), 134.2 (q, ²J_{C-F} = 29 Hz, C²), 133.8, 129 (C_{meta}, C_{ortho} Ph PPh₃), 131.3 (C_{para} Ph PPh₃), 127.5 (vt, J_{C-P} = 23 Hz, C^{ipso} PPh₃), 130.3 (C⁵), 126.3 (q, ¹J_{C-F} = 273 Hz, C⁷), 128.8 (C³), 123.7 (C⁴). ¹⁹F NMR (470.17 MHz, δ , 243 K, CD₂Cl₂): -58.9 (t, J_{P-F} = 6 Hz, CF₃), -150.8 (BF₄⁻). ³¹P{¹H} (202.31 MHz, δ , 243 K, CD₂Cl₂): 21.2 (q, J_{P-F} = 6 Hz). Analysis calc. for C₄₃H₃₆BF₇OP₂Pd: C, 58.63 ; H, 4.12; found: C, 58.90; H, 4.25.

Synthesis of $[Pd(o-CF_3-C_6H_4)(\mu-OH)(PPh_3)]_2$ (10). Complex 10 was synthesized following a reported method for analogous complexes.⁶ In a 50 mL round-bottom flask $[PdCl_2(PPh_3)_2]$ (1 g, 1.42 mmol) and KOH (4 g) were placed under N₂. The solids were suspended in a mixture of 20 mL of toluene and 4 mL of degassed H₂O. Immediately, 1-iodo-2-(trifluoromethyl)benzene (0.63 mL, 4.5 mmol) was added. The mixture was vigorously stirred for 3 h at 69 °C under N₂. The suspension turns to a yellow solution with the formation of a little amount of palladium black. The organic phase was separated and the aqueous phase was washed with toluene (2 x 10 mL). Activated carbon was added to the combined organic phases and they were filtered off through a plot of Celite. The filtrate was evaporated to dryness. 5 mL of pentane were added to the yellow residue and the mixture was stirred for 30 min at room temperature. A yellow solid was generated, containing the desired complex 10 and PPh₃O. The solid was filtered off and recrystallized twice in a mixture of CH₂Cl₂/pentane (1:3). Complex 10 was obtained as a white solid (0.95 g, 89% yield).

In CDCl₃, complex **10** is a mixture of four isomers, resulting from the different disposition of the phosphines (*cis* or *trans*) and CF₃ groups (*syn* or *anti*) (Figure S3). We assigned the signals at -1.77 ppm and -2.05 ppm in the OH region of the ¹H NMR

spectrum to the *trans* isomers (Figure S4). In addition, we tentatively assigned the major isomer for the *cis* disposition of the phosphines to the compound where the CF₃ groups are in *anti* disposition (OH groups at -0.5 ppm and -3.57 ppm, Figure S4).

Figure S3. Four isomers for complex 10 detected in CDCl₃ at 298 K.

Figure S4. ¹H NMR of complex **10** in CDCl₃ at 298 K showing only the region corresponding to the OH groups.

10: ¹H NMR (499.73 MHz, δ , CDCl₃): 7.68, 7.59, 7.52 (m, H⁶, H^{6'}), 7.5-7.1 (m, PPh₃), 7.10, 7.03, 6.99 (m, H³, H^{3'}), 6.8-6.6 (m, H⁵, H^{5'}, H⁴, H^{4'}), -0.51 (s, 1H, OH, *cis-anti-***10**), -0.93 (s, 1H, OH, *cis-syn-***10**), -1.77 (s, 1H, OH, *trans-anti/syn-***10**), -2.05 (s, 3H, OH, OH', *trans-syn/anti-***10**), -3.57 (s, 1H, OH', *cis-anti-***10**), -3.87 (s, 1H, OH', *cis-syn-***10**). ¹³C{¹H} (125.67 MHz, δ , CDCl₃): 150, 149.2, 148.98, 148.16 (C¹, C^{1'}), 138.6-138.2 (C⁶, C^{6'}), 135 (C², C^{2'}), 134.3, 128.2 (C_{ortho}, C_{meta} Ph PPh₃), 130.6 (C_{ipso} Ph PPh₃), 130.3 (C_{para}, Ph PPh₃), 127.2 (q, ¹J_{C-F} = 273 Hz, C⁷, C^{7'}), 128.3, 126.1, 122.7 (C⁵, C^{5'}, C⁴, C^{4'}, C³, C^{3'}). ¹⁹F NMR (470.17 MHz, δ , CDCl₃): -60.6 (d, J_{P-F} = 5 Hz, CF₃), -60.9

(d, $J_{P-F} = 5 \text{ Hz}$, CF_3). -61.1 (d, $J_{P-F} = 5 \text{ Hz}$, CF_3), -60.12 (d, $J_{P-F} = 5 \text{ Hz}$, CF_3). ³¹P{¹H} NMR (202.31 MHz, δ , CDCl₃): 27.7(m), 27.1(m).

1.4- Study of the formation *in situ* of organometallic species starting from complexes **1**, **2** and **4**.

1.4.1- Effect of the amount of $AgBF_4$ in the formation of nickel cationic species in a mixture of $CH_2Cl_2/toluene$

A general procedure for the following experiments is described (mol ratio 1:AgBF₄ = 1:1.25). In an oven dry vial AgBF₄ (6.1 mg, 0.031 mmol) was dissolved in 2 mL of dry toluene under N₂. The solution was cooled to 243 K for 10 min until constant temperature and then complex 1 (20 mg, 0.0247 mmol) dissolved in 1 mL of dry-cooled CH₂Cl₂ was added. Instantly, a white solid (AgBr) appeared and the suspension was stirred for 15 min at 243 K. The white solid was removed employing a PTFE 0.2 μ m filter and the orange solution was transferred to an oven dry and cooled Schlenk tube. The solution was evaporated to dryness. The residue was redissolved in 0.6 mL of dry and cooled CD₂Cl₂ and checked by NMR spectroscopy.

Figure S5. ¹H NMR (499.73 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex **1** and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:**1** = 1:1). *Signals corresponding to CH₂Cl₂ and toluene.

Figure S6. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex **1** and AgBF₄ (mol ratio AgBF₄:**1** = 1:1) in CH₂Cl₂/toluene. % Mol of **1** = 22.4; % mol of **2** = 77.6.

Figure S7. ³¹P NMR (202.31 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex **1** and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:**1** = 1:1).

Figure S8. ¹H NMR (499.73 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 1 and 1.25 eq. of AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:1 = 1.25:1). *Signal corresponding to CH₂Cl₂ and toluene.

Figure S9. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* with complex **1** and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:**1** = 1.25:1). % Mol of **2** = 55.3; % mol of **3** = 44.7.

Figure S10. ³¹P NMR (202.31 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* with complex **1** and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:**1** = 1.25:1).

Figure S11. ¹H NMR (499.73 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* with complex **1** and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:**1** = 1.75:1). *Signal corresponding to CH₂Cl₂ and toluene.

Figure S12. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex **1** and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:**1** = 1.75:1). % Mol of **3** = 78.4; % mol of **2** = 9.3; % mol of ***** = 12.3). *Unidentified complex.

Figure S13. ³¹P NMR (202.31 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex **1** and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:**1** = 1.75:1). *unidentified complex.

Figure S14. ¹H NMR (499.73 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 1 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:1 = 2.25:1). *Signal corresponding to CH₂Cl₂ and toluene.

Figure S15. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex **1** and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:**1** = 2.25:1).

Figure S16. ³¹P NMR (202.31 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 1 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:1 = 2.25:1).

Figure S17. Comparative ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) spectra of the organometallic species generated *in situ* from complex **1** and different amounts of AgBF₄ in CH₂Cl₂/toluene: a) mol ratio AgBF₄:**1** = 1:1; b) mol ratio AgBF₄:**1** = 1.25:1; c) mol ratio AgBF₄:**1** = 1.75:1; d) mol ratio AgBF₄:**1** = 2.25:1. *unidentified complex.

To compare the species generated *in situ* at room temperature, we performed the abstraction of the bromine atom in complex 1 with AgBF₄ (mol ratio AgBF₄:1 = 1:1.25) in CH₂Cl₂/toluene following the procedure mentioned above. The NMR spectra (Figures S18-S19) showed the formation of a similar mixture of the organometallic species detected at low temperature (Figures S9-S10). Note that the signals are very broad so the determination of the mol % of the species present is difficult. We decided to perform all experiments at low temperature to avoid the decomposition of the diaquo complex **3** that is highly unstable at room temperature.

Figure S18. ¹⁹F NMR (376.498 MHz, 298 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 1 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:1 = 1.25:1).*unidentified complex.

Figure S19. ³¹P NMR (202.31 MHz, 298 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 1 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:1 = 1.25:1).

1.4.2- Formation in situ of complex 3 and [Ag(PPh₃)₂](BF₄) starting from 2 and AgBF₄

In an oven-dried vial, AgBF₄ (5.7 mg, 0.0293 mmol) was placed under N₂. The solid was dissolved in 2 mL of toluene and the solution was cooled in an acetone bath at 243 K for 10 min to ensure a constant temperature. In another vial complex **2** (24.4 mg, 0.0293 mmol) was dissolved in 2 mL of CH_2Cl_2 and cooled at 243 K for 10 min. The cooled yellow solution of **2** was added to the solution of AgBF₄ and it was stirred for 10 min. After this time, the solution was evaporated to dryness. The residue was redissolved in dry and cooled CD_2Cl_2 . The mixture was checked by NMR spectroscopy.

Figure S20. ¹H NMR (499.73 MHz, 243 K, CD_2Cl_2) of complex **3** generated *in situ* from **2** and AgBF₄ in a mixture of CH₂Cl₂/toluene (mol ratio **2**:AgBF₄ = 1:1). *Signal corresponding to CH₂Cl₂ and toluene.

Figure S21. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of complex **3** generated *in situ* from **2** and $AgBF_4$ in a mixture of CH_2Cl_2 /toluene (mol ratio **2**: $AgBF_4 = 1:1$).

Figure S22. ³¹P NMR (202.31 MHz, 243 K, CD_2Cl_2) of complex **3** generated *in situ* from **2** and AgBF₄ in a mixture of CH₂Cl₂/toluene (mol ratio **2**:AgBF₄ = 1:1).

1.4.3- Formation *in situ* of complex **3** starting from **4** and HBF_{4(aq)}

In a Schlenk tube complex **4** (20 mg, 0.0207 mmol) was dissolved in 2 mL of CH_2Cl_2 . The solution was cooled in an acetone bath at 243 K for 10 min until constant temperature. HBF₄ (aq) (8 μ L, 0.0633 mmol; 48 wt. %) was added to the mixture and the orange solution was stirred for 10 min at 243 K. After this time, the orange solution was evaporated to dryness and the residue was redissolved in 0.6 mL of dry and cooled CD_2Cl_2 . The mixture was analyzed by NMR spectroscopy.

Figure S23. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of complex **3** generated *in situ* from **4** and $HBF_{4(aq)}$ in a mixture of CH_2Cl_2 .

Figure S24. ³¹P NMR (202.31 MHz, 243 K, CD_2Cl_2) of complex **3** generated *in situ* from **4** and $HBF_{4(aq)}$ in a mixture of CH_2Cl_2 .

In an oven-dried vial AgBF₄ (8 mg, 0.0408 mmol) was dissolved in 3 mL of dry acetone under N₂. The solution was cooled to 243 K for 10 min until constant temperature. Complex **1** (20 mg, 0.0247 mmol) was added to the mixture and instantly a white solid (AgBr) appeared. The suspension was stirred for 15 min at 243 K. The white solid was removed employing a 0.2 μ m PTFE filter and the orange solution was transferred to an oven dried and cooled Schlenk tube. The solution was evaporated to dryness. The residue was redissolved in 0.6 mL of CDCl₃ and the solution was checked by NMR spectroscopy. The mixture contained **5** as well as [Ag(PPh₃)₂](BF₄) in a molar ratio 1:0.5 (Figures S70-S73).

5: ¹H NMR (499.73 MHz, δ, CDCl₃, 243 K): 7.88 (d, 1H, ¹J_{H-H} = 6.9 Hz, H⁶), 7.5-7.12 (m, PPh₃), 6.9-6.7 (m, 3H, H⁵, H⁴, H³), 5.05 (bs, 1H, OH), 3.22 (d, 1H, ¹J_{H-H} = 19.7 Hz, H¹⁰), 2.73 (d, 1H, ¹J_{H-H} = 19.7 Hz, H^{10'}), 1.75 (s, 3H, H⁹), 1.65 (s, 3H, CH₃) 1.29 (s, 3H, CH₃). ¹³C{¹H} (125.758 MHz, δ, CDCl₃, 233 K): 222.2 (C⁸), 137.07 (C⁶), 133.9, 129.7, 127.7 (PPh₃), 128.5, 126.7, 124.1 (C⁵, C⁴, C³), 71.6 (C¹¹), 51.35 (C¹⁰), 32.13 (C⁹), 27.8 (CH₃), 27.17 (CH₃). ¹⁹F NMR (470.17 MHz, δ, CDCl₃, 243 K): -58.1 (d, J_{P-F} = 6 Hz, CF₃), -150.2 (BF₄). ³¹P{¹H} NMR (202.31 MHz, δ, CDCl₃, 243 K): 13 (dd, J_{Ag}¹⁰⁹-P = 584 Hz; J_{Ag}¹⁰⁷-P = 510 Hz).

Figure S25. Comparative ¹⁹F NMR (376.498 MHz, 243 K, CDCl₃) of the organometallic species generated *in situ* from complex **1** and different amounts of AgBF₄ in acetone: a) mol ratio AgBF₄:**1** = 1.5:1; b) mol ratio AgBF₄:**1** = 1:1.

Figure S26. Comparative ³¹P NMR (202.31 MHz, 243 K, CDCl₃) of the organometallic species generated *in situ* from complex **1** and different amounts of AgBF₄ in acetone: a) mol ratio AgBF₄:**1** = 1.5:1; b) mol ratio AgBF₄:**1** = 1:1.

In a Schlenk tube, complex **4** (20 mg, 0.0213 mmol) was dissolved in 3 mL of dry CH_2Cl_2 under N_2 . The solution was cooled in an acetone bath at 243 K for 10 min until constant temperature. The ligand MeCOCH₂C(OH)Me₂ (27 µL, 0.216 mmol) and HBF₄·Et₂O (9 µL, 0.066 mmol) were added. The orange solution was stirred at 243 K for 10 min. After this time, the solution was evaporated to dryness and the orange residue was redissolved in 0.6 mL of dry CDCl₃ at 243 K. The solution was checked by NMR spectroscopy showing the formation of **5** as major species and free ligand (Figures S27-S29).

Figure S27. ¹H NMR spectra (499.73 MHz, 243 K, CDCl₃) of the reaction mixture of the hydroxo dimer **5**, HBF₄·Et₂O and the ligand MeCOCH₂C(OH)Me₂ (in excess).*CHCl₃

15 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 f1 (ppm)

Figure S28. ¹⁹F NMR spectra (376.498 MHz, 243 K, CDCl₃) of the reaction mixture of the hydroxo dimer **5**, HBF₄·Et₂O and the ligand MeCOCH₂C(OH)Me₂.

10 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 f1 (ppm)

Figure S29. ³¹P NMR spectra (202.31 MHz, 243 K, CDCl₃) of the reaction mixture of the hydroxo dimer 5, HBF₄·Et₂O and the ligand MeCOCH₂C(OH)Me₂.

1.5- Study of the formation *in situ* of organometallic species starting from complexes **7**, **8** and **10**

<u>1.5.1- Effect of the amount of $AgBF_4$ in the formation of palladium cationic species in a</u> mixture of $CH_2Cl_2/toluene$

A general procedure for the following experiments is described (mol ratio 7:AgBF₄ = 1:2.5). In an oven-dried vial AgBF₄ (9.1 mg, 0.0467 mmol) was dissolved in 2 mL of dry toluene under N₂. The solution was cooled to 243 K for 10 min until constant temperature. Complex 7 (16 mg, 0.0187 mmol) and 1 mL of cooled CH₂Cl₂ were added. Instantly, a white solid (AgBr) appeared and the suspension was stirred for 15 min at 243. The solid was removed employing a 0.2 μ m PTFE filter and the solution was transferred to a cooled Schlenk tube. The solution was evaporated to dryness. The residue was redissolved in 0.6 mL of dry and cooled CD₂Cl₂ and checked by NMR spectroscopy.

Figure S30. ¹H NMR (499.73 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 1:1). *Signal corresponding to CH₂Cl₂ and toluene.

Figure S31. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 1:1). Mol % 7 = 21.3; mol % 8 = 78.7).

Figure S32. ³¹P NMR (202.31 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 1:1).

Figure S33. ¹H NMR (499.73 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 1.25:1). *Signal corresponding to CH₂Cl₂.

Figure S34. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 1.25:1).

Figure S35. ³¹P NMR (202.31 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 1.25:1).

Figure S36. ¹H NMR (499.73 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 2.5:1). *Signal corresponding to CH₂Cl₂ and toluene.

Figure S37. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 2.5:1). Mol % **8** = 88.5; mol % **9** = 11.5).

Figure S38. ³¹P NMR (202.31 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 2.5:1).

Figure S39. ¹H NMR (499.73 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 10:1). *Signal corresponding to CH₂Cl₂ and toluene.

Figure S40. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex **7** and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:**7** = 10:1). Mol % **8** = 17.3; mol % **9** = 82.7).

Figure S41. ³¹P NMR (202.31 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 10:1).

Figure S42. Comparative ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) spectra of the organometallic species generated *in situ* from complex 7 and different amounts of AgBF₄ in CH₂Cl₂/toluene: a) mol ratio AgBF₄:7 = 1:1; b) mol ratio AgBF₄:7 = 1.25:1; c) mol ratio AgBF₄:7 = 2.25:1; d) mol ratio AgBF₄:7 = 10:1.

To compare the species generated *in situ* at room temperature, we performed the abstraction of the bromide in complex 7 with 10 equiv. of $AgBF_4$ in CH_2Cl_2 /toluene following the procedure mentioned above. The NMR spectra (Figures S43-S45) showed the formation of a similar mixture of 8 and 9 to that detected at low temperature (Figures S39-S41). We decided to perform all experiments at low temperature to avoid the decomposition of the diaquo complex 9 that is unstable at room temperature.

Figure S43. ¹H NMR (499.73 MHz, 298 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 10:1). *Signal corresponding to CH₂Cl₂ and toluene.

Figure S44. ¹⁹F NMR (376.498 MHz, 298 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex **7** and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:**7** = 10:1). Mol % **8** = 5.7; mol % **9** = 94.3).

Figure S45. ³¹P NMR (202.31 MHz, 298 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in CH₂Cl₂/toluene (mol ratio AgBF₄:7 = 10:1).

1.5.2- Formation *in situ* of a mixture of complexes **8**, **9** and $[Ag(PPh_3)_n]BF_4$ starting from **8** and AgBF₄

In an oven-dried vial, $AgBF_4$ (19.68 mg, 0.101 mmol) was placed under N₂. The solid was dissolved in 4 mL of dry toluene and the solution was cooled in an acetone bath at 243 K for 10 min to ensure a constant temperature. Complex **8** (8.9 mg, 0.01 mmol) and 2 mL of dry CH₂Cl₂ were added. The solution was stirred for 15 min at 243 K. After this time, the solution was evaporated to dryness. The residue was redissolved in 0.6 mL of dry and cooled CD₂Cl₂ and the mixture was checked by NMR spectroscopy.

8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.1 f1 (ppm)

Figure S46. ¹H NMR (499.73 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from **8** and AgBF₄ in a mixture of CH₂Cl₂/toluene (mol ratio **8**:AgBF₄ = 1:10). *Signal corresponding to CH₂Cl₂ and toluene.

Figure S47. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from **8** and AgBF₄ in a mixture of CH₂Cl₂/toluene (mol ratio **8**:AgBF₄ = 1:10; % mol **8** = 20.6; % mol **9** = 79.4).

Figure S48. ³¹P NMR (202.31 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from **8** and AgBF₄ in a mixture of CH₂Cl₂/toluene (mol ratio **8**:AgBF₄ = 1:10).

1.5.3- Formation *in situ* of complex 9 starting from 10 and HBF_{4(aq)}

In a Schlenk tube complex **10** (20 mg, 0.0188 mmol) was dissolved in 2 mL of CH₂Cl₂. The solution was cooled in an acetone bath at 243 K for 10 min until constant temperature. HBF_{4(aq)} was added (6 μ L, 0.0459 mmol; 48 wt. %) to the mixture and the yellow solution was stirred for 15 min at 243 K. After this time, the orange solution was evaporated to dryness and the residue was redissolved in 0.6 mL of dry CD₂Cl₂ at low temperature. The mixture was analyzed by NMR spectroscopy. ¹H NMR (499.73 MHz, δ , 243 K, CD₂Cl₂): 7.48 (m, 3H, H_{para} PPh₃), 7.35 (m, 13H, H_{meta}, H_{ortho} PPh₃, H⁶), 7.15 (d, 1H, J = 7.8 Hz, H³), 6.96 (t, 1H, J = 7.8 Hz, H⁴), 6.88 (t, 1H, J = 7.8 Hz, H⁵), 3.7 (bs, 4H, OH₂). ¹³C{¹H} (125.758 MHz, δ , 243 K, CD₂Cl₂): 141.3 (C¹), 135.5 (d, ³J_{C-P} = 6.5 Hz, C⁶), 133.4 (q, ²J_{C-F} = 28 Hz, C²), 134, 128.9 (C_{meta}, C_{ortho} Ph PPh₃), 127.2 (vt, J_{C-P} = 56 Hz, C^{ipso} PPh₃), 131.6 (C_{para} Ph PPh₃), 130.3 (C⁵), 124 (q, ¹J_{C-F} = 273 Hz, C⁷), 127.1 (C³), 124.7 (C⁴). ¹⁹F NMR (470.17 MHz, δ , 243 K, CD₂Cl₂): -59.41 (d, J_{P-F} = 3.5 Hz, CF₃), -149.04 (BF₄⁻). ³¹P{¹H} (202.31 MHz, δ , 243 K, CD₂Cl₂): 31.3 (Figures S86-S89).

1.5.4- Abstraction of bromide in complex 7 with AgBF₄ in acetone

In an oven-dried vial AgBF₄ (9.1 mg, 0.0467 mmol) was dissolved in 3 mL of dry acetone under N₂. The solution was cooled to 243 K for 10 min until constant temperature and complex 7 (26.6 mg, 0.0311 mmol) was added. Instantly, a white solid (AgBr) appeared and the suspension was stirred for 15 min at 243 K. The solid was removed employing a 0.2 μ m PTFE filter and the solution was transferred to a cooled Schlenk tube. The solution was evaporated to dryness. The residue was dissolved in 0.6 mL of dry and cooled CD₂Cl₂ and it was checked by NMR spectroscopy.

Figure S49. ¹H NMR (499.73 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in acetone (mol ratio AgBF₄:7 = 1.5:1). *Signal corresponding to CH₂Cl₂ and free acetone.

Figure S50. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in acetone (mol ratio AgBF₄:7 = 1.5:1). Mol % **8** = 60%; mol % **8**-ac = 40%).

Figure S51. ³¹P NMR (202.31 MHz, 243 K, CD_2Cl_2) of the organometallic species generated *in situ* from complex 7 and AgBF₄ in acetone (mol ratio AgBF₄:7 = 1.5:1).

No signals for the self-condensation product of the acetone (MeCOCH₂C(OH)Me₂) were detected in the ¹H NMR, as we distinguished previously for complex **1**. The two complexes detected are assigned to complex **8** and a derivative of complex **8** where the molecule of water is substituted by a molecule of acetone (**8**-ac.). The formation of this similar mixture is confirmed dissolving complex **8** in 2 mL of dry acetone. After the evaporation of the acetone, the residue was redissolved in 0.6 mL of dry CD₂Cl₂ and the mixture was analyzed by NMR spectroscopy at 243 K giving the same mixture (Figures S52-S53).

Figure S52. ¹H NMR (499.73 MHz, 243 K, CD₂Cl₂) of the organometallic species formed by dissolving **8** in dry acetone. *Signal corresponding to CH₂Cl₂ and free acetone.

Figure S53. ¹⁹F NMR (376.498 MHz, 243 K, CD_2Cl_2) of the organometallic species formed by dissolving **8** in dry acetone (mol % **8** = 65%; mol % **8**-ac = 35%).

1.6- General procedure for the polymerization experiments with norbornene

1.6.1. VA-polymerization of NB with a mixture of complex 1 and $AgBF_4$ (mol ratio $AgBF_4$: 1 = 1.25:1) prepared in CH₂Cl₂/toluene.

In an oven-dried vial AgBF₄ (0.035 mmol, 6.8 mg) was dissolved in 2 mL of dry toluene under N₂. Complex **1** (0.0281 mmol, 22.7 mg) dissolved in 1 mL of dry CH₂Cl₂ was added. Instantly, a white solid (AgBr) appeared and the suspension was stirred for 10 min at room temperature. The white solid was removed employing a 0.2 μ m PTFE filter and the yellow solution was transferred to a Schlenk tube. The solution was evaporated to dryness and the residue was redissolved in 6.5 mL of dry CH₂Cl₂ and then a solution of NB in CH₂Cl₂ was added (0.55 mL, 2.107 mmol; 3.8 M, [NB]₀ = 0.3 M). A white solid appeared and the suspension was stirred for 24 h at 25 °C. MeOH (10 mL) was added to the suspension inducing the complete precipitation of the polymer and the suspension was stirred for 30 min at room temperature. The white solid was filtered off, washed with MeOH (2 x 10 mL) and Et₂O (5 mL) and air-dried (0.18 g, 91 % yield).⁷ ¹H NMR (499.73 MHz, δ , CDCl₃): 2.5-2 (b, H¹, H⁴), 2-0.61 (b, H⁷, H⁶, H⁵, H³, H²). ¹³C{¹H} NMR (125.67 MHz, δ , CDCl₃): 55-50 (C³, C²), 48-38 (C⁴, C¹), 37-35 (C⁷), 32.5-28 (C⁶, C⁵). ¹⁹F NMR (470.17 MHz, δ , CDCl₃): -58 (VA-PNB-(*o*-CF₃-C₆H₄).* The polymer is insoluble and its molecular weight could not be determined.

* The presence of a fluorine signal indicates that the polymerization initiates by insertion of norbornene into the Ni-Ar bond.

1.6.2. Test polymerization of norbornene with the mixture AgBF₄/2PPh₃

In an oven-dried vial was placed the AgBF₄ (4.1 mg, 0.021 mmol). The solid was suspended in 4 mL of dry CH₂Cl₂ and PPh₃ (11 mg, 0.042 mmol) was added. After 5 min ofstirring, a colorless solution was formed. Subsequently, a solution of NB in CH₂Cl₂ was added (0.57 mL, 1.575 mmol; 3.8 M, $[NB]_o = 0.34$ M). The solution was stirred for 24 h at 25 °C. After this time, 10 mL of MeOH were added but no solid (polymer) appeared in the solution. The solution was evaporated to dryness and the residue was checked by NMR spectroscopy in CDCl₃. Neither oligomers nor dimers were detected in the residue.

1.6.3. VA-polymerization of NB with a mixture of complex 1 and $AgBF_4$ (mol ratio $AgBF_4$: 1 = 1.5:1) prepared in acetone.

In an oven-dried vial AgBF₄ (8 mg, 0.0408 mmol) was dissolved in 3 mL of dry acetone under N₂. The solution was cooled to 243 K for 10 min until constant temperature. Complex 1 (0.0247 mmol, 20 mg) was added to the mixture and instantly a white solid (AgBr) appeared. The suspension was stirred for 15 min at 243 K. The white solid was removed employing a 0.2 µm PTFE filter and the orange solution was transferred to an previously cooled Schlenk tube. The solution was evaporated to dryness and the residue was redissolved in 5.6 mL of dry CH₂Cl₂. Then, a solution of norbornene was added (0.48 mL, 1.85 mmol; 3.8 M, $[NB]_0 = 0.3$ M). The solution was stirred for 24 h at 25 °C. MeOH (10 mL) was added to the suspension inducing the complete precipitation of the polymer and the suspension was stirred 30 min at room temperature. The white solid was filtered off and washed with MeOH (2 x 10 mL) and Et₂O (5 mL) and air-dried (0.1 g, 57.4% yield).⁸ Ratio NB_{VA}/NB_{RO} = 7.5/1. M_w = 4200 Da; D = 1.3. ¹H NMR (499.73) MHz, δ, CDCl₃): 5.86-5.18 (b, H^{3RO.int}, H^{3RO.term}, H^{2RO.int}, H^{2RO.term}), 4.79, 4.68 (H^{7RO.term}), 3.28 (H^{3VA}), 2.5-1.55 (b, H^{6RO.int}, H^{5RO.int}, H^{5RO.term}, H^{4RO.int}, H^{4RO.term}, H^{4VA}, $H^{3'VA}$, H^{2VA} , H^{1VA} , $H^{1RO.int}$, $H^{1RO.term}$), 1.55-0.55 (b, H^{7VA} , H^{6VA} , H^{5VA} , $H^{7RO.int}$). ${}^{13}C{}^{1}H{}$ NMR (125.67 MHz, δ, CDCl₃): 152-148 (C^{6RO.term}), 134.6-126.6 (C^{3RO.int}, C^{3RO.term}), C^{2RO.int}, C^{2RO.term}), 108.2 (C^{7RO.term}), 54.3-36.8 (C^{6RO.int}, C^{4VA}, C^{3VA}, C^{3VA}, C^{2VA}, C^{1VA}, C^{1RO.int}, C^{1RO.term}), 36.6-28.7 (C^{7RO.int}, C^{7VA}, C^{6VA}, C^{5VA}, C^{5VA}, C^{5RO.term}, C^{4RO.term}), 25.4-21 (C^{5RO.int}, C^{4RO.int}). ¹⁹F NMR (499.73 MHz, δ, CDCl₃): -58 (VA/RO-PNB-(*o*-CF₃-C₆H₄).*

* The presence of a fluorine signal indicates that the polymerization initiates by insertion of norbornene into the Ni-Ar bond.

 $Ar = o - CF_3 - C_6H_4$

1.6.4. VA-polymerization of NB with complex 6

Catalyst **6** (0.020 g, 0.0286 mmol) was dissolved in 6.8 mL of dry CH_2Cl_2 under N_2 . Immediately, a solution of norbornene in CH_2Cl_2 (0.55 mL, 2.1 mmol; 3.8 M, $[NB]_0 = 0.3$ M) was added. The yellow solution was stirred for 24 h at 25 °C. After this time, 20 mL of MeOH was added but no solid (polymer) appeared. The solution was evaporated to dryness and the yellow residue was dissolved in 1 mL of $CHCl_3$. A preparative TLC in silica gel using Et_2O as eluent was performed. The component with Rf \approx 0.6 was extracted with 15 mL of CH_2Cl_2 . The suspension was filtered off and the solution was evaporated to dryness. The residue was checked by NMR spectroscopy in $CDCl_3$. The spectroscopy data matches those of the dimer represented below and reported previously.^{8,9}

2. Data for X-Ray molecular structure determinations.

Crystals suitable for X-ray analyses were obtained by slow vapor-diffusion of pentane to a solution of complexes **2** and *cis-anti*-**4** in CH₂Cl₂, and complex **6** in CHCl₃ at 238 K. The crystals were mounted on the tip of glass fibers. X-ray measurements were made using an Agilent Supernova diffractometer with an Atlas CCD area detector. Data collection was performed with Mo K α radiation (0.71073 Å). Data integration and empirical absorption correction was carried out using the CrysAlisPro program package.¹⁰ The structures were solved by direct methods and refined by full-matrix least squares against F² with SHELX,¹¹ in OLEX2.¹² Non-hydrogen atoms were refined anisotropically and hydrogen atoms were constrained to ideal geometries and refined with fixed isotropic displacement parameters. Refinement proceeded smoothly to give the residuals shown in Table S1.

The crystal structures have been deposited in the CCDC database: CCDC 2220622-2220624.

Complex	2	cis-anti-4	6
Empirical formula	C ₄₃ H ₃₆ BF ₇ NiOP ₂	$C_{50}H_{40}F_6Ni_2O_2P_2$	C ₃₂ H ₃₀ BF ₇ NiOPS
Formula weight	833.18	966.18	682.09
Temperature/K	298	298	298
Crystal system	monoclinic	triclinic	orthorhombic
Space group	P21/n	P-1	Pbcn
a/Å	14.9997(11)	13.0312(11)	16.7171(6)
b/Å	16.0731(9)	13.1540(13)	14.3676(6)
c/Å	17.9157(8)	14.7181(6)	37.0248(11)
a/°	90	81.840(5)	90
β/°	95.104(5)	86.385(5)	90
$\gamma/^{\circ}$	90	63.640(9)	90
Volume/Å ³	4302.2(4)	2237.7(3)	8892.7(5)
Ζ	4	2	11
$\rho_{calc}g/cm^3$	1.286	1.377	1.401
µ/mm⁻¹	0.586	0.975	0.935
F(000)	1712	916	3808
Crystal size/mm ³	0.365 × 0.275 × 0.123	0.248 × 0.151 × 0.079	0.524 × 0.524 × 0.319
Radiation	Mo Kα (λ = 0.71073)	Mo Kα (λ = 0.71073)	Mo K α (λ = 0.71073)
2⊖ range for data collection/°	6.604 to 59.062	6.592 to 59.332	6.534 to 59.616

Table S1. Crystal data and structure refinement parameters for complexes 2, 4 and 6.

Index ranges	$-17 \le h \le 19, -16 \le k$ $\le 21, -24 \le l \le 18$	$-18 \le h \le 16, -13 \le k$ $\le 16, -14 \le l \le 18$	$-15 \le h \le 22, -17 \le k$ $\le 10, -50 \le l \le 35$
Reflections collected	19444	19757	24643
Independent reflections	9976 [Rint = 0.0471, Rsigma = 0.1005]	10477 [Rint = 0.0501, Rsigma = 0.1094]	10307 [Rint = 0.0376, Rsigma = 0.0589]
Data/restraints/parameters	9976/1/553	10477/0/567	10307/0/473
Goodness-of-fit on F ²	1.028	1.036	1.033
Final R indexes [I>= 2σ (I)]	R1 = 0.0833, wR2 = 0.1833	R1 = 0.0766, wR2 = 0.1771	R1 = 0.0896, wR2 = 0.2418
Final R indexes [all data]	R1 = 0.1724, wR2 = 0.2250	R1 = 0.1539, wR2 = 0.2273	R1 = 0.1476, wR2 = 0.2851
Largest diff. peak/hole / e Å ⁻ $_{3}$	0.868/-0.401	0.658/-0.415	0.681/-0.690

Figure S54. Molecular structure of complex 2 (ORTEP 30% probability ellipsoids). Hydrogen atoms and BF_4 were omitted for clarity.

 Table S2. Selected bond distances (Å) and angles (°) for complex 2.

Ni1-P1	2.3231(19)	P1-Ni1-P2	169.18(6)
Ni1-P2	2.3687(17)	O1-Ni1-P1	95.31(14)
Ni1-O1	1.987(4)	C1-Ni1-P1	85.62(16)
Ni1-C1	1.881(5)		

Figure S55. Molecular structure of complex 4 (ORTEP 30% probability ellipsoids). Hydrogen atoms (except those for the OH groups) were omitted for clarity.

Ni1-P1	2.1478(16)	P1-Ni1-O2	95.18(14)
Ni1-C1	1.894(5)	P1-Ni1-C1	92.63(16)
Ni1-O1	1.885(4)	C1-Ni1-O1	94.2(2)
Ni1-O2	1.909(4)	Ni1-O2-Ni2	94.2(2)
Ni2-P2	2.1489(16)	Ni1-O1-Ni2	92.23(19)
Ni2-C26	1.898(5)	P2-Ni2-O2	98.00(15)
Ni2-O1	1.879(4)	P2-Ni2-C26	91.25(16)
Ni2-O2	1.917(4)	C26-Ni2-O1	93.2(2)

Table S3. Selected bond distances (Å) and angles (°) for complex 4.

Figure S56. Molecular structure of complex **6** (ORTEP 30% probability ellipsoids). Hydrogen atoms and BF_4 were omitted for clarity.

Ni1-S1	2.2041(17)	O1-Ni1-P1	87.47(12)
Nil-Ol	1.944(4)	S1-Ni1-C1	87.99(16)
Ni1-C1	1.891(5)	C1-Ni1-P1	90.16(16)
O1-C8	1.226(7)	S1-Ni1-O1	95.22(12)
S1-C11	1.842(6)		
C8-C10	1.468(9)		
C10-C11	1.537(10)		

 Table S4. Selected bond distances (Å) and angles (°) for complex 6.

3. Selected NMR spectra of nickel(II) complexes

Figure S57. ¹H NMR (499.73 MHz, CD_2Cl_2) of complex [Ni(*o*-CF₃-C₆H₄)Br(PPh₃)₂] (1) at 298 K. *Signal corresponding to the solvent.

Figure S58. ¹³C{¹H} NMR (125.67 MHz, CD_2Cl_2) of complex [Ni(*o*-CF₃-C₆H₄)Br(PPh₃)₂] (1) at 298 K. *Signal corresponding to the solvent.

-58.45 -58.50 -58.55 -58.60 -58.65 -58.70 -58.75 -58.80 -58.85 -58.90 -58.95 -59.00 -59.05 -59.10 -59.15 -59.20 -59.25 -59. f1 (ppm)

Figure S59. ¹⁹F NMR (470.17 MHz, CDCl₃) of complex [Ni(*o*-CF₃-C₆H₄)Br(PPh₃)₂] (1) at 298 K.

Figure S60. ³¹P{¹H} NMR (202.31 MHz, CDCl₃) of complex [Ni(*o*-CF₃-C₆H₄)Br(PPh₃)₂] (1) at 298 K.

Figure S61. ¹H NMR (499.73 MHz, CD_2Cl_2) of complex [Ni(*o*-CF₃-C₆H₄)(OH₂)(PPh₃)₂](BF₄) (2) at 243 K.*Signal corresponding to the solvent.

Figure S62. ¹³C{¹H} NMR (125.67 MHz, CD₂Cl₂) of complex $[Ni(o-CF_3-C_6H_4)(OH_2)(PPh_3)_2](BF_4)$ (2) at 243 K. *Signal corresponding to the solvent.

Figure S63. ¹⁹F NMR (470.17 MHz, 243 K, CD_2Cl_2) of complex [Ni(*o*-CF₃-C₆H₄)(OH₂)(PPh₃)₂](BF₄) (**2**) at 243 K. Signal of BF₄ (-150.7) was omitted for clarity.

Figure S64. ³¹P{¹H} NMR (202.31 MHz, dry CD₂Cl₂) of complex [Ni(*o*-CF₃-C₆H₄)(OH₂)(PPh₃)₂](BF₄) (2) at 243 K.

Figure S65. ¹H NMR (499.73 MHz, dry CDCl₃) for complex $[Ni(o-CF_3-C_6H_4)(\mu-OH)(PPh_3)]_2$ (4, mixture of isomers) at 298 K.* Signal corresponding to the solvent.

Figure S66. ¹³C{¹H} NMR (125.67 MHz, dry CDCl₃) of complex $[Ni(o-CF_3-C_6H_4)(\mu-OH)(PPh_3)]_2$ (4, mixture of isomers) at 298 K.*Signal corresponding to the solvent.

Figure S67. ¹⁹F NMR (470.17 MHz, dry CDCl₃) of complex $[Ni(o-CF_3-C_6H_4)(\mu-OH)(PPh_3)]_2$ (4, mixture of isomers) at 298 K.

Figure S68. ³¹P{¹H} NMR (202.31 MHz, dry CDCl₃) of complex $[Ni(o-CF_3-C_6H_4)(\mu-OH)(PPh_3)]_2$ (4, mixture of isomers) at 298 K.

Figure S69. ¹H NMR (499.73 MHz, CDCl₃) of complex $[Ni(o-CF_3-C_6H_4)(\kappa^2-O, O-MeC(O)CH_2C(OH)Me_2)-(PPh_3)](BF_4)$ (5) generated in situ from complex 1 and AgBF₄ at 243 K.*Signal corresponding to the solvent.

Figure S70 ¹³C{¹H} NMR (125.67 MHz, CDCl₃) of complex [Ni(*o*-CF₃-C₆H₄)(κ^2 -O, O-MeC(O)CH₂C(OH)Me₂)-(PPh₃)](BF₄) (5) generated in situ from complex 1 and AgBF₄ at 243 K. *Signal corresponding to the solvent.

Figure S71. ¹⁹F NMR (470.17 MHz, 243 K, CDCl₃) of complex[Ni(o-CF₃-C₆H₄)(κ^2 -O, O-MeC(O)CH₂C(OH)Me₂)-(PPh₃)](BF₄) (**5**) generated in situ from complex **1** and AgBF₄ at 243 K.

Figure S72. ³¹P{¹H} NMR (202.31 MHz, CDCl₃) of complex [Ni(*o*-CF₃-C₆H₄)(κ^2 -O, O-MeC(O)CH₂C(OH)Me₂)-(PPh₃)](BF₄) (5) generated in situ from complex 1 and AgBF₄ at 243 K.

Figure S73. ¹H NMR (499.73 MHz, CDCl₃) of complex $[Ni(-o-CF_3-C_6H_4)(\kappa^2-O, S-MeC(O)CH_2C(SMe)Me_2)(PPh_3)](BF_4)$ (6) at 298 K.*Signal corresponding to the solvent.

Figure S74. ¹³C{¹H} NMR (125.67 MHz, CDCl₃) of complex [Ni(o-CF₃-C₆H₄)(κ ²-O, S-MeC(O)CH₂C(SMe)Me₂)(PPh₃)](BF₄) (6) at 298 K.*Signal corresponding to the solvent.

Figure S75. ¹⁹F NMR (470.17 MHz, CDCl₃) of complex $[Ni(o-CF_3-C_6H_4)(\kappa^2-O, S-MeC(O)CH_2C(SMe)Me_2)(PPh_3)](BF_4)$ (6) at 298 K.

26.0 25.5 25.0 24.5 24.0 23.5 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 18.5 18.0 17.5 17.0 16. f1 (ppm)

Figure S76. ${}^{31}P{}^{1}H$ NMR (202.31 MHz, CDCl₃) of complex [Ni(*o*-CF₃-C₆H₄)(κ^{2} -O, S-MeC(O)CH₂C(SMe)Me₂)(PPh₃)](BF₄) (6) at 298 K.

4. Selected NMR spectra of palladium(II) complexes

Figure S77. ¹H NMR (499.73 MHz, CD_2Cl_2) of complex $[Pd(o-CF_3-C_6H_4)Br(PPh_3)_2]$ (7) at 298 K. *Signal corresponding to the solvent.

165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 f1 (ppm)

Figure S78. ¹³C $\{^{1}H\}$ NMR (125.67 MHz, CD₂Cl₂) of complex [Pd(*o*-CF₃-C₆H₄)Br(PPh₃)₂] (7) at 298 K. *Signal corresponding to the solvent.

Figure S79. ¹⁹F NMR (470.17 MHz, CD₂Cl₂) of complex [Pd(*o*-CF₃-C₆H₄)Br(PPh₃)₂] (7) at 298 K.

Figure S80. ³¹P{¹H} NMR (202.31 MHz, CD₂Cl₂) of complex [Pd(*o*-CF₃-C₆H₄)Br(PPh₃)₂] (7) at 298 K.

Figure S81. ¹H NMR (499.73 MHz, CD_2Cl_2) of complex [Pd(*o*-CF₃-C₆H₄)(OH₂)(PPh₃)₂] (8) at 243 K. *Signal corresponding to the solvent.

Figure S82. ¹³C{¹H} NMR (125.67 MHz, CD_2Cl_2) of complex [Pd(*o*-CF₃-C₆H₄)(OH₂)(PPh₃)₂] (8) at 243 K. *Signal corresponding to the solvent.

-59.3 -59.4 -59.5 -59.6 -59.7 -59.8 -59.9 -60.0 -60.1 -60.2 -60.3 -60.4 -60.5 -60.6 -60.7 -60.8 -60.9 -61.0 -61.1 f1 (ppm)

Figure S83. ¹⁹F NMR (470.17 MHz, CD₂Cl₂) of complex [Pd(*o*-CF₃-C₆H₄)(OH₂)(PPh₃)₂] (8) at 243 K.

Figure S84. ³¹P{¹H} NMR (202.31 MHz, CD₂Cl₂) of complex [Pd(*o*-CF₃-C₆H₄)(OH₂)(PPh₃)₂] (8) at 243 K.

Figure S85. ¹H NMR (499.73 MHz, CD_2Cl_2) of complex [Pd(*o*-CF₃-C₆H₄)(OH₂)₂(PPh₃)] (9) at 243 K. *Signal corresponding to the solvent.

Figure S86. ¹³C{¹H} NMR (125.67 MHz, CD_2Cl_2) for complex [Pd(*o*-CF₃-C₆H₄)(OH₂)₂(PPh₃)] (9) at 243 K. *Signal corresponding to the solvent.

Figure S87. ¹⁹F NMR (470.17 MHz, CD_2Cl_2) of complex [Pd(*o*-CF₃-C₆H₄)(OH₂)₂(PPh₃)] (9) at 243 K. The signal corresponding to BF₄⁻ (-149.04 ppm) was omitted to clarity.

Figure S88. ³¹P{¹H} NMR (202.31 MHz, CD₂Cl₂) of complex [Pd(*o*-CF₃-C₆H₄)(OH₂)₂(PPh₃)] (9) at 243 K.

Figure S89. ¹H NMR (499.73 MHz, CDCl₃) of complex [Pd(*o*-CF₃-C₆H₄)(µ-OH)(PPh₃)]₂ (**10**, mixture of isomers) at 298 K. *Signal corresponding to the solvent.

Figure S90. ¹³C{¹H} NMR (125.67 MHz, CDCl₃) of complex $[Pd(o-CF_3-C_6H_4)(\mu-OH)(PPh_3)]_2$ (10, mixture of isomers) at 298 K. *Signal corresponding to the solvent.

Figure S91. ¹⁹F NMR (470.17 MHz, CDCl₃) for complex [Pd(*o*-CF₃-C₆H₄)(μ-OH)(PPh₃)]₂ (**10**, mixture of isomers) at 298 K.

Figure S92. ³¹P{¹H} NMR (202.31 MHz, CDCl₃) for complex $[Pd(o-CF_3-C_6H_4)(\mu-OH)(PPh_3)]_2$ (10, mixture of isomers) at 298 K.

4. Selected NMR spectra and GPC chromatogram of the polymers

Figure S93. ¹H NMR (499.73 MHz, CDCl₃) of VA-PNB generated with the catalyst prepared from $1/\text{AgBF}_4$ in CH₂Cl₂/toluene (ratio NB:1/AgBF₄ = 75:1:1.25) at 298 K. *Signal corresponding to the solvent.

Figure S94. ¹³C{¹H} NMR (125.67 MHz, CDCl₃) for VA-PNB generated with the catalyst prepared from $1/AgBF_4$ in CH₂Cl₂/toluene (ratio NB:1/AgBF₄ = 75:1:1.25) at 298 K. *Signal corresponding to the solvent.

Figure S95. ¹⁹F NMR (470.17 MHz, CDCl₃) for VA-PNB generated with the catalyst prepared from $1/AgBF_4$ in CH₂Cl₂/toluene (ratio NB: $1/AgBF_4 = 75:1:1.25$) at 298 K.

Figure S96. ¹H NMR (499.73 MHz, CDCl₃) of the polymer VA/RO-PNB generated with the catalyst prepared from $1/AgBF_4$ in acetone (ratio NB:1/AgBF₄ = 75:1:1.5) at 298 K. *Signal corresponding to the solvent.

Figure S97. ¹³C{¹H} NMR (125.67 MHz, CDCl₃) of the polymer VA/RO-PNB generated with the catalyst prepared from $1/AgBF_4$ in acetone (ratio NB:1/AgBF₄ = 75:1:1.5) at 298 K. *Signal corresponding to the solvent.

Figure S98. ¹⁹F NMR (470.17 MHz, CDCl₃) of the polymer VA/RO-PNB generated with the catalyst prepared from $1/AgBF_4$ in acetone (ratio NB:1/AgBF₄ = 75:1:1.5 at 298 K.

Figure S99. GPC chromatogram for VA/RO-PNB synthesized with the catalyst prepared from $1/AgBF_4$ in acetone.

6. References

- a) E. A. Standley, S. J. Smith, P. Müller and T. F. Jamison, *Organometallics* 2014,
 33, 2012-2018; b) M. SennŌ, S. Tsuchiya, M. Hidai and Y. Uchida, *Bull. Chem. Soc. Japan*, 1976, 49, 1184-1186.
- 2 D. R. Coulson, L. C. Satek and S. O. Grim, *Inorg. Synth.* 1972, **13**, 121-124.
- 3 P. Fitton and E. A. Rick, J. Organomet. Chem. 1971, 28, 287-291.
- 4 a) H. F. Klein and H. K. Karsch, *Chem. Ber.* 1973, 106, 1433-1452; b) A. H. Christian, P. Müller and S. Monfette, *Organometallics* 2014, 33, 2134-2137; c) E. Carmona, J. M. Marín, P. Palma, M. Paneque and M. L. Poveda, *Inorg. Chem.* 1989, 28, 1895-1900.
- 5 J. M. Jenkins, J. C. Verkade, *Inorg. Synth.* 1968, **11**, 108-111.
- 6 V. V. Grushin, H. Alper, *Organometallics* 1993, **12**, 1890-1901.
- For characterization of VA-PNBs see: a) W. Kaminsky, A. Bark, M. Arndt, *Makromol. Chem. Macromol. Symp.* 1991, 41, 83-93; b) M. Arndt, R. Engenhausen, W. Kaminsky, K. Zoumis, *J. Mol. Catal. A Chem.* 1995, 101, 171-178; c) D. A. Barnes, G. M. Benedikt, B. L. Goodall, S. S. Huang, H. A. Kalamarides, S. Lenhard, L. H. McIntosh, K. T. Selvy, R. A. Shick, L. F. Rhodes, *Macromolecules* 2003, 36, 2623-2632.
- 8 I. Pérez-Ortega, A. C. Albéniz, Chem. Sci., 2022, 13, 1823-1828.
- 9 A. Tenaglia, A. Terranova, B. Waegell, J. Mol. Cat. 1987, 40, 281-287.
- 10 CrysAlisPro Software system, version 1.171.33.51, 2009, Oxford Diffraction Ltd, Oxford, UK.
- 11 G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- 12 O. V Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.* 2009, **42**, 339–34.