ELECTRONIC SUPPORTING INFORMATION

Electronic Supporting Information for:

C–H Activation in Bimetallic Rhodium Complexes to Afford N-Heterocyclic Carbene Pincer Complexes.

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Anthony F. Hill*^a and Lachlan J. Watson^a

Experimental

General Considerations

Unless otherwise stated, experimental work was carried out at room temperature under a dry and oxygen-free nitrogen atmosphere using standard Schlenk techniques with dried and degassed solvents.

NMR spectra were obtained on a Bruker Avance 400 (1H at 400.1 MHz, ¹³C at 100.6 MHz, ¹⁹F at 376.5 MHz, ³¹P at 162 MHz), a Bruker Avance 600 (¹H at 600.0 MHz, ¹³C at 150.9 MHz), a Bruker Avance 700 (¹H at 700.0 MHz, ¹³C at 176.1 MHz, ³¹P at 283 MHz) or a Bruker Avance 800 (1H at 800.1 MHz, ¹³C at 201.2 MHz) spectrometers at the temperatures indicated. Chemical shifts (δ) are reported in ppm with coupling constants given in Hz and are referenced to the solvent peak, or external references (85% H₃PO4 in H₂O for ³¹P). The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems. In some cases, distinct peaks were observed in the ¹H and ¹³C{¹H} NMR spectra, but to the level of accuracy that is reportable (i.e. 2 decimal places for ¹H NMR, 1 decimal place for ¹³C NMR) they are reported as having the same chemical shift. The abbreviation 'napth' is used to refer to the naphthalene backbone of the dihydroperimidine based ligand, while 'i' (ipso), 'o' (ortho), 'm' (meta), and 'p' (para) refer to positions on the phenyl rings of PPh₂ groups. Extreme insolubility in many samples resulted in low quality NMR acquisitions, and as a result some resonances may not be unequivocally assigned.

Infrared spectra were obtained using a PerkinElmer Spectrum One FT-IR spectrometer. The strengths of IR absorptions are denoted by the abbreviations vs (very strong), s (strong), m (medium), w (weak), sh (shoulder) and br (broad).

^{a.} Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.

* Corresponding author. E-mail: a.hill@anu.edu.au

Elemental microanalytical data were provided by Macquarie University. High-resolution electrospray ionisation mass spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service with acetonitrile or methanol as the matrix.

Data for X-ray crystallography were collected with an Agilent Xcalibur CCD diffractometer or an Agilent SuperNova CCD diffractometer using Mo-K α radiation (λ = 0.71073 Å) or Cu-K α radiation (λ = 1.54184 Å) and the CrysAlis PRO software.¹ The structures were solved by intrinsic phasing and refined by full-matrix least-squares on F^2 using the SHELXS or SHELXT and SHELXL programs.² Hydrogen atoms were located geometrically and refined using a riding model. Diagrams were produced using the CCDC visualisation program Mercury.³ Structural data for **2a** were collected at the Australian Synchrotron using the MX2 beamline using silicon double crystal monochromated synchrotron radiation at 100 K. Raw frame data were collected using Blulce⁴ and data reduction, interframe scaling, unit cell refinement and absorption corrections were processed using XDS.⁵

1,8-bis(R-The synthesis of the pro-ligands phosphinomethyl)-2,3-dihydroperimidine (di-R-H₂Pm, R = phenyl, cyclohexyl) and the rhodium complexes [RhCl(RPm)] reported previously.6 The have been reagents $[RhCl(CO)(PPh_3)_2],^7$ [RhCl(CS)(PPh₃)₂],⁸ [RhH(CO)(PPh₃)₃],⁹ [Rh(CO)(PPh₃)₂]₂,^{10,11} potassium graphite (KC₈),¹² and hexafluorophosphate^{13,14} triphenylcyclopropenium were prepared according to literature procedures. The remaining reagents were purchased from commercial sources.

Computational Details

Computational studies were performed by using the *SPARTAN20*[®] suite of programs.¹⁵ Geometry optimisation (gas phase) for diatomics and metal complexes was performed at the DFT level of theory using the exchange functionals ω B97X-D of Head-Gordon.^{16,17} The Los Alamos effective core potential type basis set (LANL2D ζ) of Hay and Wadt ¹⁸⁻²⁰ was used for I, Mo and W while Pople 6-31G* basis sets²¹ were used for all other atoms. Frequency calculations were performed for all compounds to

CCDC 2222022-222025.2222038, 2222051 and 22225520 contain the supplementary crystallographic data for this paper, and are available free of charge from The Cambridge Crystallographic Data Centre.

confirm that each optimized structure was a local minimum and also to identify vibrational modes of interest. Cartesian atomic coordinates are provided below.

Synthetic Procedures

Synthesis of [RhCl(CO)(µ-PhH2Pm)]2 (2a). A solution of [RhCl(CO)(PPh₃)₂] (644 mg, 0.932 mmol) and PhH₂Pm (528 mg, 0.932 mmol) was heated to 50 °C in THF (20 mL) for 1.5 hours resulting in an off-white suspension. The solvent was removed under reduced pressure, and the sample suspended in CH₂Cl₂ (15 mL) and treated with ethanol (20 mL) before selectively removing the CH₂Cl₂ under reduced pressure to afford an offwhite precipitate. The suspension was filtered and the solid washed with ethanol (20 mL), petroleum spirits (60-80 °C, 40 mL) and diethyl ether (30 mL) before drying in vacuo. Yield: 560 mg (0.382 mmol, 82%). IR (CH₂Cl₂, cm⁻¹): 1980 v_{CO}, 1590 v_{C=C}. IR (ATR, cm $^{\text{-1}}$): 1978 ν_{CO} , 1591 $\nu_{\text{C=C}}$ ^{1}H NMR (700 MHz, CDCl_3, 298 K): δ_{H} = 7.80 (s.br, 8 H, PPh₂), 7.31, 7.21 (2 x s.br, overlap with CHCl₃ peak, 12 H, PPh₂), 6.85 (d, 2 H, ³J_{HH} = 8.1 Hz, napthCH), 6.74 (dd, 2 H, ³J_{HH} = 7.81 Hz, napthCH), 5.98 (d, 2 H, ³J_{HH} = 7.6 Hz, napthCH), 5.33 (m, 4 H, NCH₂P), 4.79 (s.br, 2 H, NCH₂N). The compound was insufficiently soluble in any organic solvent to unequivocally identify any peaks in the ¹³C{¹H} or 2D ¹H–¹³C HSQC or HMBC NMR spectra. $^{31}P\{^{1}H\}$ NMR (283 MHz, CDCl_3, 298 K): δ_P = 18.5 (d.br, ${}^{1}J_{RhP}$ = 124 Hz). MS (ESI, +ve ion, *m/z*): Found: 1429.1781. Calcd. for C₇₆H₆₄³⁵ClN₄P₄Rh₂O₂ [M–Cl]⁺: 1429.1779. Anal. Found: C 62.37 H 4.44 N 3.81 %. Calcd. for C₇₆H₆₄Cl₂N₄P₄Rh₂O₂: C 62.27 H 4.40 N 3.82 %. Crystals suitable for structural determination were grown by slow evaporation of a saturated chloroform solution at 25 °C and measured at the Australian Synchrotron on the MX₂ beamline. Low data completion ratio is due to the limitations of the instrument available at the Australian Synchrotron operating under rotation data collection with a fixed detector and affects some high angle data. Crystal Data for C76H64Cl2N4O2P4Rh2 $(M_w = 1465.91 \text{ gmol}^{-1})$: triclinic, space group *P*-1 (no. 2), *a* = 11.403(2), b = 12.569(3), c = 12.798(3) Å, $\alpha = 108.38(3)$, $\beta =$ 106.46(3), $\gamma = 93.84(3)^\circ$, $V = 1644.5(7) Å^3$, Z = 1, T = 100(2) K, μ (Synchrotron) = 0.732 mm⁻¹, D_{calc} = 1.480 Mgm⁻³, 30342 reflections measured ($3.466^\circ \le 2\Theta \le 64.204^\circ$), 8517 unique (R_{int} = 0.0563, R_{sigma} = 0.0613) which were used in all calculations. The final R_1 was 0.0521 ($I > 2\sigma(I)$) and wR_2 was 0.1575 (all data) for 406 refined parameters without restraints. CCDC 2222552.

Synthesis of [RhCl(CO)(μ -CyH₂Pm)]₂ (2b). A suspension of [RhCl(CO)(PPh₃)₂] (100 mg, 0.145 mmol) and CyH₂Pm (86 mg, 0.145 mmol) was stirred in THF (10 mL) for 2 hours before removing the solvent under reduced pressure. The sample was partially dissolved in CH₂Cl₂ (10 mL) before adding ethanol (20 mL), then removing the CH₂Cl₂ selectively under reduced pressure to afford an off-white precipitate. The suspension was filtered and the solid washed with petroleum spirits (60–80 °C, 10 mL) and diethyl ether (10 mL) before drying *in vacuo*. Yield: 83 mg (0.055 mmol, 76%). IR (CH₂Cl₂, cm⁻¹): 1955 v_{CO}, 1608 v_{C=C}. IR (ATR, cm⁻¹): 1954 v_{CO}, 1591 v_{C=C}. ¹H NMR (700 MHz, C₆D₁₂, 298 K): δ_{H} = 7.17 (dd, 2 H, ³J_{HH} = 7.8 Hz, napthCH), 7.04 (d, 2 H,

³*J*_{HH} = 8.1 Hz, napth*CH*), 6.63 (s.br, 2 H, napth*CH*), 5.06 (3 x s.br, 6 H, N*CH*₂P and N*CH*₂N). The compound was insufficiently soluble in any organic solvent to usefully identify any resonances in the ¹³C{¹H} or 2D ¹H–¹³C{¹H} HSQC or HMBC NMR spectra. ³¹P{¹H} NMR (283 MHz, C₆D₁₂, 298 K): δ_P = 42.76, 34.52 (2 x s.br). MS (ESI, +ve ion, m/z): Found: 1477.5537. Calcd. for C₇₆H₁₁₂³⁵ClN₄O₂P₄Rh₂ [M–CI]⁺: 1477.5534. Anal. Found: C 60.30 H 7.34 N 3.72 %. Calcd. for C₇₆H₁₁₂Cl₂N₄O₂P₄Rh₂: C 60.28 H 7.45 N 3.70 %. Insolubility of the complex precluded recrystallisation for X-ray diffraction studies.

Synthesis of [RhCl(CS)(µ-PhH₂Pm)]₂ (3a). An orange solution of [RhCl(CS)(PPh₃)₂] (135 mg, 0.191 mmol) and PhH₂Pm (108 mg, 0.191 mmol) in THF (20 mL) was stirred for 1.5 hours. The solvent was removed under reduced pressure, and the sample dissolved in the minimal CH₂Cl₂ (ca. 10 mL). Addition of n-hexane (30 mL) and selective removal of CH₂Cl₂ under reduced pressure afforded a light orange precipitate. The suspension was filtered and the solid washed with n-hexane (30 mL), ethanol (5 mL) and diethyl ether (15 mL) before drying in vacuo. Yield: 108 mg (0.0739 mmol, 78%). IR (CH₂Cl₂, cm⁻¹): 1592 $v_{C=C}$, 1312 v_{CS} . IR(ATR, cm⁻¹): 1591 $v_{C=C}$, 1311 v_{CS} . ¹H NMR (700 MHz, CDCl₃, 298 K): δ_{H} = 7.86 (s.br, 8 H, PPh₂), 7.29, 7.21 (2 x s.br, 12 H, PPh₂), 6.85 (d, 2 H, ³J_{HH} = 7.9 Hz, napthCH), 6.76 (dd, 2 H, ³J_{нн} = 7.6 Hz, napthCH), 6.05 (d, 2 H, ³J_{нн} = 7.4 Hz, napthCH), 5.40 (s.br, 4 H, NCH₂P), 4.83 (s.br, 2 H, NCH₂N). The compound was insufficiently soluble in any organic solvent to identify the CS carbon resonance by ¹³C{¹H} or ¹H–¹³C HMBC spectroscopy. $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl_3, 298 K): δ_{C} = 142.1, 135.1 (napthC), 135.0 (napthC or PPh₂), 132.3 (d, J_{PC} = 10 Hz, PPh₂), 132.1, 130.8, 130.7, 130.6, 130.5 (napthC or PPh₂), 128.6 (d, J_{PC} = 12 Hz, PPh₂), 128.2 (PPh₂), 116.9, 115.3, 104.7 (napthCH), 67.3 (NCH₂N), 50.5 (m, NCH₂P). ³¹P{¹H} NMR (163 MHz, CDCl₃, 298 K): $\delta_{\rm P}$ = 19.6 (d.br, ¹J_{RhP} = 137 Hz). MS (ESI, +ve ion, *m/z*): Found: 713.0816. Calcd. for C₃₈H₃₂N₂P₂RhS [M – 2Cl]²⁺: 713.0817. Anal. Found: C 60.91 H 4.28 N 3.77 S 3.81 %. Calcd. for C76H64Cl2N4P4Rh2S2: C 60.93 H 4.28 N 3.74 S 4.28 %. Crystals suitable for structural determination were grown from liquid diffusion of ethanol into a saturated CDCl₃ solution at 5 °C. The crystals suffer from modulated disorder from a rotating chloroform solvate influencing the ligand backbone. The modulation could not be successfully modelled, but a twofold disorder model is adequate to extract some structural information. Low data completion ratio is due to the limitations of the instrument available at the Australian Synchrotron operating under rotation data collection with a fixed detector and affects some high angle data. Crystal Data for C₃₉H₃₃Cl₄N₂P₂RhS (*M*_w =868.38 gmol⁻¹): triclinic, space group *P*-1 (no. 2), *a* = 12.1459(6), *b* = 12.7759(8), *c* = 13.1675(7) Å, *α* = 70.396(5), β = 77.844(4), γ = 84.928(4)°, V = 1881.32(19) Å³, Z = 2, T = 150.0(1) K, μ (Cu K α) = 7.852 mm⁻¹, $D_{calc} = 1.533$ Mgm⁻³, 13600 reflections measured (7.346° $\leq 2\Theta \leq 147.404^{\circ}$), 7420 unique ($R_{int} = 0.0342$, $R_{sigma} = 0.0466$) which were used in all calculations. The final R_1 was 0.0505 ($I > 2\sigma(I)$) and wR_2 was 0.1413 (all data) for 739 refined parameters with 625 restraints. CCDC 2222051.

Synthesis of $[RhCl(CS)(\mu-CyH_2Pm)]_2$ (3b). A suspension of $[RhCl(CO)(PPh_3)_2]$ (90 mg, 0.127 mmol) and CyH_2Pm (75 mg,

0.127 mmol) was stirred in THF (10 mL) for an hour before removing the solvent under reduced pressure. The sample was partially dissolved in CH₂Cl₂ (15 mL) before adding ethanol (20 mL) and filtering to afford a pale orange solid. The solid was washed with petroleum spirits (60–80 °C, 20 mL) and diethyl ether (10 mL) before drying *in vacuo*. Yield: 68 mg (0.044 mmol, 69%). IR (CH₂Cl₂, cm⁻¹): 1607 v_{C=C}, v_{CS} obscured by solvent background. IR (ATR, cm⁻¹): 1591 v_{C=C}, 1283 v_{CS}. The compound was too insoluble in any organic solvent to obtain useful NMR data. This also precluded crystallographic analysis. MS (ESI, +ve ion, *m/z*): Found: 1509.5090. Calcd. for C₇₆H₁₁₂³⁵ClN₄P₄Rh₂S₂ [M–Cl]⁺: 1509.5077. Anal. Found: C 59.24 H 7.13 N 3.64 S 3.79 %. Calcd. for C₇₆H₁₁₂Cl₂N₄P₄Rh₂S₂: C 59.02 H 7.30 N 3.62 S 4.15 %.

Syntheses of [Rh₂(µ-CO)₂(PhH₂Pm)₂].Et₂O (4). (a) Method 1; KC₈ reduction: A suspension of 2a (256 mg, 0.175 mmol) and KC₈ (180 mg, 1.33 mmol) in benzene (10 mL) was stirred for 4-12 hours at room temperature and the reaction progress monitored regularly by ¹H NMR spectroscopy. Immediately after consumption of the staring material and concomitant formation of a dark red colour, the suspension was filtered through diatomaceous earth, washing with benzene (~ 10 mL) until the filtrate ran clear. The solvent was condensed to ~4 mL under reduced pressure, and diethyl ether (10 mL) added to afford a red-orange precipitate. The solid was collected by filtration, washing with n-hexane (3 x 15 mL) and diethyl ether (2 x 5 mL), before drying in vacuo. Yield: 42 mg (0.029 mmol, 17%). (b) Method 2; ligand substitution: A solution of [Rh(CO)(PPh₃)₂]₂ in benzene was prepared by bubbling CO through a solution of [RhH(CO)(PPh₃)₃] (250 mg, 0.272 mmol) in benzene (10 mL) for 30 mins. To the orange solution was added PhH₂Pm (154 mg, 0.271 mmol), causing a darker colour and some effervescence. After stirring for 16 hours, the solvent was condensed to ~4 mL under reduced pressure and diethyl ether (4 mL) added to afford a very small amount of off-white precipitate. The red filtrate was collected, and diethyl ether (6 mL) added before leaving the flask to sit for an hour to form large red crystals. The product was collected by filtration and washed with *n*-hexane (3 x 15 mL) and diethyl ether (2 x 5 mL) before drying in vacuo. Yield: 121 mg (0.0824 mmol, 61%). IR (THF, cm $^{-1}$): 1738 ν_{CO} , 1593 $\nu_{\text{C=C}}$ IR (ATR, cm $^{-1}$) 1736 $\nu_{\textit{CO}}$, 1591 v_{C=C}. ¹H NMR (700 MHz, C₆D₆, 298 K): δ_H = 8.05 (m, 8 H, *o*-PPh₂), 7.44, 7.36 (2 x m, 8 H, o-PPh₂), 7.29 (s.br, 2 H, NCH-Rh), 7.32, 7.27 (2 x m, 4 H, napthCH), 7.23-6.78 (series of multiplets, 24 H, m-PPh₂ and p-PPh₂), 6.67-6.62 (m, 8 H, napthCH), 4.57, 4.38 (2 x s.br, 2 x 2 H, NCH₂P), 4.13 (d, 2 H, ${}^{2}J_{HH}$ = 12 Hz, terminal NCHN), 3.88, 3.80 (2 x s.br, 2 x 2 H, NCH₂P), 3.27 (q, 2 H, ${}^{3}J_{HH}$ = 7 Hz, Et₂O), 1.12 (t, 3 H, ${}^{3}J_{HH}$ = 7 Hz, Et₂O). Overlapping peaks prevent accurate integrations and assignments of some ¹H NMR signals. Some positions were determined using 2-D NMR techniques, while others could not be assigned with confidence. ³¹P{¹H} NMR (283 MHz, C_6D_6 , 298 K): δ_P = 24.09 (d, ${}^{1}J_{RhP}$ = 186 Hz), 18.69 (d, ${}^{1}J_{RhP}$ = 201 Hz). ${}^{31}P{}^{1}H}$ NMR (162 MHz, C₆D₆, 298 K): δ_{P} = 24.07 (d, ${}^{1}J_{RhP}$ = 186 Hz), 18.77 (d, ${}^{1}J_{RhP}$ = 201 Hz). ${}^{13}C{}^{1}H$ NMR (176 MHz, C₆D₆, 298 K): δ_C = 238.5 (m, Rh₂CO), 146.2, 145.4 (2 x s.br, napthC), 137.70 (t.br, ${}^{1}J_{PC}$ = 34 Hz, *i*-PPh₂), 136.9 (d, ${}^{1}J_{PC}$ = 31 Hz, *i*-PPh₂), 136.5 (napthC), 133.9 (br m, *o*-PPh₂), 132.7 (d, o-

ELECTRONIC SUPPORTING INFORMATION

PPh₂), 129.6-127.0 (series of peaks unassigned by 2D experiments, napthC, m-PPh₂, p-PPh₂), 120.8 (brs, napthCH), 119.9 (napthC), 119.4 (s.br, napthCH), 110.7, 107.5 (2 x br s, napthCH), 65.9 (s, Et₂O), 64.0 (br m, N₂CH₂), 52.4 (d.br, ¹J_{PC} = 23 Hz, NCH₂P), 50.02 (d.br, ${}^{1}J_{PC}$ = 26 Hz, NCH₂P), 15.60 (Et₂O). The sensitivity of this compound precluded mass spectrometric analysis. Anal. Found: C 65.63 H 4.71 N 4.12 %. Calcd. for C76H62N4O2P4Rh2: C 65.43 H 4.62 N 4.02 %. Crystals suitable for structural determination were grown from liquid diffusion of diethyl ether into a saturated benzene solution of the sample at room temperature. Crystal Data for C₈₄H₈₄N₄O₄P₄Rh₂ $(M_w = 1541.23 \text{ gmol}^{-1})$: monoclinic, space group I2/a (no. 15), a = 26.9934(4), b = 12.76730(10), c = 23.3601(4) Å, $\beta = 115.376(2)^{\circ}$, V = 7273.9(2) Å³, Z = 4, T = 150.0(1) K, μ(Cu Kα) = 4.929 mm⁻¹, D_{calc} = 1.407 Mgm⁻³, 21222 reflections measured (7.816° $\leq 2\Theta \leq$ 147.844°), 7280 unique ($R_{int} = 0.0207$, $R_{sigma} = 0.0209$) which were used in all calculations. The final R_1 was 0.0292 ($I > 2\sigma(I)$) and wR₂ was 0.0770 (all data) for 444 refined parameters without restraints. CCDC 2222038.

Syntheses of [Rh(CO)(PhPm)]X (X = BF₄, PF₆) (5). (a) Method 1, synthesis of [Rh(CO)(PhPm)]BF4: A solution of 1a (250 mg, 0.356 mmol) and AgBF₄ (83 mg, 0.427 mmol) in acetonitrile (15 mL) was stirred for 1 hour in the absence of light before bubbling CO through the solution for 1.5 hours. The solution was stirred for a further hour, then the solvent removed under reduced pressure. The product was extracted through a small diatomaceous earth plug (3 x 5 cm) with the minimal CH_2Cl_2 (~20 mL), and the solvent removed under reduced pressure. The product was then extracted through an identical diatomaceous earth plug using the minimal ethanol (20 mL) to which n-hexane (100 mL) was added to afford a bright yellow solid. Following filtration, the solid was washed with toluene (2 x 15 mL), nhexane (2 x 20 mL) and Et₂O (2 x 20 mL) before drying in vacuo. Yield: 189 mg (242 mmol, 68 %). IR (CH₂Cl₂, cm⁻¹) 2029 v_{CO}, 1586 $v_{C=C}$. IR (ATR, cm⁻¹) 2025 v_{CO} , 1583 $v_{C=C}$. ¹H NMR (800 MHz, (CD₃)₂CO, 298 K): δ_H = 7.96 (m, 8 H, *o*-PPh₂), 7.65 (m, 4 H, *p*-PPh₂), 7.62 (m, 8 H, *m*-PPh₂), 7.56 (d, 2 H, ³J_{HH} = 8 Hz, napthCH), 7.46 (t, 2 H, ${}^{3}J_{HH}$ = 8 Hz, napthCH), 7.29 (d, 2 H, ${}^{3}J_{HH}$ = 8 Hz, napthCH), 5.48 (t^v, ^{2,4}J_{PH} = 3 Hz, NCH₂P). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 298 K): δ_P = 36.90 (d, ¹J_{RhP} = 132 Hz). ¹⁹F NMR (376 MHz, CD_2CI_2 , 298 K): $\delta_F = -152.3$ (s). ¹³C{¹H} NMR (201 MHz, (CD₃)₂CO, 298 K): $\delta_{\rm C}$ = 209.2 (dt, ${}^{1}J_{\rm RhC}$ = 47, ${}^{2}J_{\rm PC}$ = 10 Hz, NCN, assigned on the basis of coupling to the NCH₂P protons in the HMBC experiment), 195.5 (dt, ${}^{1}J_{RhC}$ = 58, ${}^{2}J_{PC}$ = 13 Hz, CO), 135.0 (napthC), 134.7 (napthC), 133.9 (vt, ²J_{PC} = 7 Hz, *o*-PPh₂), 132.7 (*p*-PPh₂), 131.40 (napthC), 131.0 (vt, ¹*J*_{PC} = 25 Hz, *i*-Ph), 130.2 (vt, ³J_{PC} = 6 Hz, *m*-PPh₂), 129.04 (napth*C*H), 123.6 (napth*C*H), 120.8 (napthC), 109.9 (napthCH), 61.6 (vt, ^{1,3}J_{PC} = 17 Hz, NCH₂P). MS (ESI, +ve ion, m/z): Found: 695.0891. Calcd. for $C_{38}H_{30}N_2OP_2{}^{103}Rh\ [M-BF_4]^+:$ 695.0888. Anal. Found: C 58.74 H 4.53 N 3.41 %. Calcd. for $C_{38}H_{30}BF_4N_2OP_2Rh$: C 58.76 H 4.54 N 3.61 %. (b) Method 2, synthesis of [Rh(CO)(PhPm)]PF₆: To a solution of 4 in benzene was added excess [C₃Ph₃]PF₆. Crystals suitable for structural determination deposited immediately from the benzene reaction mixture. Crude ³¹P{¹H} NMR spectroscopy estimates 78% conversion alongside two unknown rhodium-containing products. IR (CH₂Cl₂, cm⁻¹) 2030

ELECTRONIC SUPPORTING INFORMATION

v_{CO}, 1586 v_{C=C}. ¹H NMR (400 MHz, CDCl₃, 298 K): δ_H = 7.80 (m, 8 H, PPh₂), 7.58 (m, 12 H, PPh₂), 7.20, 7.19 (2 x s.br, 2 x 2 H, napthCH), 6.99 (t, ³*J*_{HH} = 4.3 Hz, napthCH), 4.96 (t^v, ^{2,4}*J*_{HP} = 2.8 Hz, NCH₂P). ³¹P{¹H} NMR (283 MHz, CDCl₃, 298 K): δ_P = 36.24 (d, ¹*J*_{PRh} = 132 Hz), -144.1 (sept, ¹*J*_{FP} = 713 Hz, PF₆). MS (ESI, +ve ion, m/z): Found: 695.0902. Calcd. for C₃₈H₃₀N₂OP₂¹⁰³Rh [M − PF₆]*: 695.0888. *Crystal Data for* C₄₄H₃₆F₆N₂OP₃Rh (*M*_w = 918.57 gmol⁻¹): monoclinic, space group *P*2₁/n (no. 14), *a* = 15.2904(3), *b* = 16.1205(5), *c* = 19.0392(6) Å, β = 105.181(3)°, *V* = 4529.2(2) Å³, *Z* = 4, T = 150.0(1) K, μ(Cu Kα) = 4.553 mm⁻¹, *D*_{calc} = 1.347 Mgm⁻³, 17713 reflections measured (8.606° ≤ 20 ≤ 145.874°), 8798 unique (*R*_{int} = 0.0365, *R*_{sigma} = 0.0595) which were used in all calculations. The final *R*₁ was 0.0450 (*I* > 2σ(*I*)) and *wR*₂ was 0.1163 (all data) for 564 refined parameters with 310 restraints. CCDC 2222025.

Synthesis of [Rh(CO)(C=CSiMe₃)(µ-PhH₂Pm)]₂ (6). To a solution of lithium trimethylsilylacetylide (0.288 mmol) in THF (15 mL) at -78 °C was added 2a (210 mg, 0.144 mmol) and stirred for an hour before allowing the flask to warm to room temperature and stirring for 16 h. Solvent was reduced to 4 mL under reduced pressure, and Et₂O (15 mL) added to afford a small amount of yellow precipitate (unreacted 2a). The filtrate was collected by cannula filtration, and n-hexane (10 mL) added before leaving the flask at -20 °C overnight, affording a bright yellow precipitate. The product was collected by filtration, washed with Et₂O (2 x 3 mL), n-hexane (3 x 15 mL) and dried in vacuo. Yield: 142 mg (0.089 mmol, 62%). IR (CH₂Cl₂, cm⁻¹): 1986 $\nu_{\text{CO}},$ 1590 $\nu_{\text{C=C}}.$ IR (ATR, cm-1): 1975 $\nu_{\text{CO}},$ 1589 $\nu_{\text{C=C}}.$ The C=C stretch was not observed perhaps due to overlap with the CO stretch. ¹H NMR (700 MHz, CD₂Cl₂, 213 K): δ_{H} = 8.18-6.64 (series of broad multiplets, 56 H, napthCH and PPh₂), 6.47 (2 H, NCH₂N or NCH₂P), 6.20 (d, 2 H, napthCH), 6.16, 5.80, 5.34, 4.69, 4.38, 4.25, (8 x m, 8 x 1 H, NCH₂P and NCH₂N), 0.09 (18 H, SiMe₃).³¹P{¹H} NMR (283 MHz, CD₂Cl₂, 213 K): δ_P = 27.4 (²J_{RhP} = 288 Hz, ${}^{1}J_{RhP}$ = 130 Hz), 15.9 (${}^{2}J_{RhP}$ = 288 Hz, ${}^{1}J_{RhP}$ = 131 Hz). The complex was insufficiently soluble to acquire useful ¹³C NMR data. Peaks were not observed at 298 K due to broadening, the sample precipitated over time at lower temperatures and decomposed at higher temperatures. Anal. found: C 65.00; H 5.177, N 3.74. Calcd. for C₈₆H₈₂N₄O₂P₄Rh₂Si₂: C 64.98; H 5.20; N 3.52. Crystal Data for $C_{98}H_{94}N_4O_2P_4Rh_2Si_2$ (M_w =1745.65 gmol⁻¹): triclinic, space group P-1 (no. 2), a = 12.7185(5), b = 14.3038(6), c = 14.4821(6) Å, $\alpha = 64.079(4)$, $\beta = 66.091(4)$, $\gamma = 74.274(4)^{\circ}$, $V = 2152.08(18) \text{ Å}^3$, Z = 1, T = 150.0(1) K, $\mu(\text{Cu K}\alpha) = 4.472 \text{ mm}^{-1}$, D_{calc} = 1.347 Mgm⁻³, 16125 reflections measured (7.192° $\leq 2\Theta \leq$ 147.388°), 8522 unique ($R_{int} = 0.0362$, $R_{sigma} = 0.0590$) which were used in all calculations. The final R_1 was 0.0346 ($I > 2\sigma(I)$) and wR₂ was 0.0808 (all data) for 508 refined parameters without restraints. CCDC 2222024.

Synthesis of [Rh(C=CSiMe₃)(PhPm)] (7). To a solution of ethynyltrimethylsilane (0.043 mL, 0.299 mmol) in THF (20 mL) at -78 °C was added "BuLi (1.6 M, 0.20 mL, 0.314 mmol) and stirred, warming to room temperature over 45 mins. This solution was slowly added to a suspension of **1a** (0.200 g, 0.285 mmol) in THF (20 mL) at -78 °C while stirring. The solution was warmed to room temperature and stirred for 3 hours, causing the orange suspension to turn clear red. The solvent was

reduced to 5 mL and n-hexane added (60 mL) to afford a bright orange precipitate. This was collected by filtration, and the solid ultrasonically triturated in Et₂O (20 mL) for 5 minutes. The solid was isolated by filtration and washed with another 15 mL of Et₂O before drying in vacuo. Yield: 165 mg (0.217 mmol, 76%). IR (CH₂Cl₂, cm⁻¹) 2001 $v_{C=C}$, 1584 $v_{C=C}$. IR (ATR, cm⁻¹) 1995 $v_{C=C}$, 1580 v_{C=C}. ¹H NMR (800 MHz, C₆D₆, 298 K): δ_H = 8.21 (m, 8 H, o-PPh₂), 7.19 (d, 2 H, ³J_{HH} = 8.2 Hz, napthCH), 7.11 (m, 8 H, J_{HH} = 7.6 Hz, m-PPh₂), 7.05 (dd, 2 H, ³J_{HH} = 6.9 Hz, napthCH), 7.03 (m, 4 H, J_{HH} = 6.4 Hz, p-PPh₂), 6.12 (d, 2 H, ${}^{3}J_{HH}$ = 7.7 Hz, napthCH), 4.32 (s, 4 H, NCH₂P), 0.45 (s, 9 H, SiCH₃). ³¹P{¹H} NMR (162 MHz, C_6D_6 , 298 K): δ_P = 28.64 (d, ${}^{1}J_{Rh}P$ = 155 Hz). ${}^{31}C{}^{1}H$ NMR (201 MHz, C₆D₆, 298 K): δ_{C} = 218.4 (m, NCN, weak peak identified by HMBC), 135.9 (t^v, ^{1,3}J_{CP} = 20 Hz, *i*-PPh₂), 135.2 (t.br, ³J_{CP} = 5 Hz, RhCCSiMe₃), 134.8 (napthC), 134.0 (m, RhCCSiMe₃, tentatively assigned by HMBC NMR), 133.9 (t^v, ^{2,4}J_{PC} = 7 Hz, *o*-PPh₂), 130.0 (p-PPh₂), 128.7 (t^v, ^{3,5}J_{PC} = 5 Hz, *m*-PPh₂), 128.4 (napth*C*H), 120.2 (napthCH), 118.6 (napthC), 106.5 (napthCH), 60.7 (t^v, ^{2,4}J_{CP} = 15 Hz, NCH_2P), 2.5 (s, SiMe₃). The final napthC resonance was obscured by the solvent peak. MS (ESI, +ve ion, m/z): Found: 763.1336. Calcd. for C₄₂H₃₈N₂SiP₂Rh [M–H]⁺: 763.1335. Found: 779.1287. Calcd. for C₄₂H₃₈N₂SiOP₂Rh [M–H+O]⁺: 779.1284. Anal. Found: C 67.76 H 5.31 N 3.30 %. Calcd. for C48H42N2OP2RhSi: C 67.37 H 4.95 N 3.27 %. Crystals suitable for structural determination formed upon standing a saturated benzene solution at room temperature overnight. Crystal Data for C₅₁H₄₈N₂P₂RhSi (M_w =881.85 gmol⁻¹): monoclinic, space

group $P2_1/c$ (no. 14), a = 9.59280(10), b = 22.3888(2), c = 20.17120(10) Å, $b = 95.3060(10)^\circ$, V = 4313.63(6) Å³, Z = 4, T = 150.0(1) K, μ (Cu K α) = 4.450 mm⁻¹, $D_{calc} = 1.358$ Mgm⁻³, 44676 reflections measured (7.898° $\leq 20 \leq 147.96^\circ$), 8691 unique ($R_{int} = 0.0281$, $R_{sigma} = 0.0213$) which were used in all calculations. The final R_1 was 0.0316 ($I > 2\sigma(I)$) and wR_2 was 0.0879 (all data) for 537 refined parameters without restraints. CCDC 2222023.

Synthesis of [Rh(C=CPh)(PhPm)] (8). To a solution of ethynylbenzene (0.046 mL, 0.42 mmol) in THF (20 mL) at -78 °C was added "BuLi (1.6 M, 0.21 mL, 0.34 mmol) and stirred, warming to room temperature over 45 mins. This solution was slowly added to an orange suspension of 1a (0.215 g, 0.306 mmol) in THF (15 mL) at -78 °C while stirring. The solution was warmed to room temperature and stirred for 3 hours, turning clear red. The solvent was reduced to 5 mL and n-hexane (60 mL) added to afford a bright orange precipitate. This was collected by filtration, and the solid sonicated in Et₂O (20 mL) for 5 minutes. The solid was isolated by filtration and dried in vacuo. Yield: 170 mg (0.221 mmol, 72%). IR (CH₂Cl₂, cm⁻¹) 2065 $v_{C=C}$, 1585 $v_{C=C}$. IR (ATR, cm⁻¹) 2060 $v_{C=C}$, 1579 $v_{C=C}$. 1H NMR (800 MHz, C₆D₆, 298 K): δ_H = 8.23 (m, 8 H, o-PPh₂), 7.67 (d, 2 H, ³J_{HH} = 7.6 Hz, o-CCC₆H₅), 7.19 (d, 2 H, ³J_{HH} = 8.2 Hz, napthCH), 7.15 (m, 2 H, m-CCC₆H₅), 7.06 (t, 8 H, ³J_{HH} = 7 Hz, m-PPh₂), 7.04 (t, 2 H, ${}^{3}J_{HH}$ obscured due to overlap with PPh₂ group, napthCH), 6.99 (t, 4 H, ${}^{3}J_{HH}$ = 7 Hz, p-PPh₂), 6.97 (t, 1 H, ${}^{3}J_{HH}$ = 7 Hz, p-CCC₆H₅), 6.13 (d, 2 H, ${}^{3}J_{HH}$ = 7.6 Hz, napthCH), 4.33 (s, 4 H, NCH₂PPh₂). ³¹P{¹H} NMR (162 MHz, C₆D₆, 298 K): δ_P = 29.41 (d, ¹J_{PRh} = 154 Hz). ¹³C{¹H} NMR (201 MHz, C₆D₆, 298 K): δ_{c} = 217.4 (NCN, resonance too weak to observe in 1-D NMR was identified by HMBC NMR), 135.9 (t^v, ^{1,3}J_{CP} = 21 Hz, i-PPh₂), 135.3, 134.8

(napthC), 133.8 (m, o-PPh₂), 131.5 (napthC), 131.05 (i-CCPh), 130.0 (m, p-PPh₂), 128.8 (m-PPh₂), 128.7 to 127.7 (overlapping peaks obscured by solvent peak, napthCH, CCPh, o-CCPh, p-CCPh), 124.3 (m-CCPh), 120.1, 118.5, 106.8, 106.3 (napthCH and napthC), 60.6 (v^t, ${}^{3}J_{CP}$ = 15 Hz, NCH₂P). MS (ESI, +ve ion, m/z): Found: 768.1326. Calcd. for $C_{45}H_{38}N_2P_2^{103}Rh$ [M]⁺: 768.1331. Found: 791.1222. Calcd. for C₄₅H₃₈N₂P₂¹⁰³RhNa [M+Na]*: 791.1228. Anal. Found: C 69.93 H 5.255 N 3.77 %. Calcd. for $C_{45}H_{38}N_2P_2Rh$: C 70.04 H 4.96 N 3.63 %. Crystals suitable for structural determination were grown by slow diffusion of pentane into a saturated benzene solution at room temperature. Crystal Data for $C_{51}H_{41}N_2P_2Rh$ (M_w =846.71 gmol⁻ ¹): monoclinic, space group *P2*₁/n (no. 14), *a* = 9.81730(10), *b* = 25.6987(3), c = 16.1102(2) Å, $\beta = 97.0220(10)^{\circ}$, V = 4033.99(8)Å³, Z = 4, T = 150.0(1) K, μ (Cu K α) = 4.464 mm⁻¹, D_{calc} = 1.394 Mgm⁻³, 29911 reflections measured ($6.88^\circ \le 2\Theta \le 148.26^\circ$), 8097 unique ($R_{int} = 0.0277$, $R_{sigma} = 0.0252$) which were used in all calculations. The final R_1 was 0.0314 ($l > 2\sigma(l)$) and wR_2 was 0.0840 (all data) for 505 refined parameters without restraints. CCDC 2222022.

References

- CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
- (a) G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112; (b) G. M. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, 71, 3.
- (a) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453; (b) C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, **41**, 466.
- 4 T. M. McPhillips, S. E. McPhillips, H.-J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, Journal of Synchrotron Radiation, 2002, **9**, 401.
- 5 W. Kabsch, J. Appl. Crystallogr., 1993, 26, 795-800.
- 6 A. F. Hill and C. M. A. McQueen, *Organometallics*, 2012, **31**, 8051.
- 7 D. Evans, J. A. Osborn and G. Wilkinson, *Inorg. Synth.*, 1990, **28**, 79.
- 8 M. Kubota and C. O. M. Ho, Inorg. Synth., 1979, 19, 204.
- N. Ahmad, J. J. Levison and S. D. Robinson, *Inorg. Synth.*, 1990, 28, 81.
- 10 W. Rand Kenan Jr, P. Singh, C. B. Dammann and D. J. Hodgson, *Inorg. Chem.*, 1973, **12**, 1335.
- 11 D. Evans, G. Yagupsky and G. Wilkinson, J. Chem. Soc. (A), 1968, 2660.
- 12 D. M. Ottmers and H. F. Rase, Carbon N Y, 1966, 4, 125.
- 13 R. P. Hughes, J. W. Reisch and A. L. Rheingold, Organometallics, 1985, 4, 1754.
- 14 R. Breslow and R. Xu, Org. Synth., 1997, 74, 72.
- 15 Spartan 20[®] (2020) Wavefunction, Inc., 18401 Von Karman Ave., Suite 370 Irvine, CA 92612 U.S.A.
- 16 J. D. Chai and M. Head-Gordon, J Chem Phys., 2008, **128**, 084106.
- 17 J. D. Chai and M. Head-Gordon, *Phys Chem Chem Phys*, 2008, 10, 6615-6620.
- 18 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283.
- 19 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
- 20 W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284-298.

21 W. J. Hehre, R. Ditchfeld and J. A. Pople, *J. Chem. Phys.*, 1972, 56, 2257–2261.

Additional Crystal Data

Molecular structure of **3a** in a crystal of **3a**·(CHCl₃). (30% displacement ellipsoids, naphthalene and phenyl groups simplified, hydrogen atoms and solvent omitted for clarity, only one-half of the C₂-symmetric molecule is unique). Selected distances [Å] and angles [°]: Rh1–C1 1.786(5), C1–S1 1.549(5), Rh1–Cl1 2.3817(12), Rh1–P1 2.3200(10), Rh1–P2 2.3285(11), Cl1–Rh1–C1 177.36(15), P1–Rh1–P2' 177.22(4), Rh1–C1–S1 178.2(3).

Molecular structure of **8** in a crystal of $\mathbf{8}$ -(C_6H_6). (50% displacement ellipsoids, naphthalene and phenyl groups simplified, hydrogen atoms and solvent omitted for clarity). Selected distances [Å] and angles [°]: Rh1–C1 1.999(3), Rh1–C2 2.043(3), C2–C3 1.204(4), Rh1–P1 2.2305(6), Rh1–P2 2.2233(6), C1–Rh1–C2 173.71(11), Rh1–C2–C3 171.5(3), P1–Rh1–P2 165.52(3).

This journal is C The Royal Society of Chemistry 2023

Computational Results

1. 1,3-dimethyl-2,3-dihydro-1*H*-perimidine

Electrostatic Potential Surface

Cartesian Coordinates										
Ator	m x	v	z							
н	3.359002	0.036368	-2.671278							
С	2.411906	0.007619	-2.139844							
н	1.231231	0.187788	-3.916117							
С	1.235078	0.095823	-2.833894							
С	1.241711	-0.152493	-0.026171							
С	-0.003501	0.059425	-2.142348							
С	2.428248	-0.111193	-0.735113							
С	-0.002027	-0.057798	-0.728408							
С	-1.243671	0.121748	-2.828992							
н	3.382191	-0.162975	-0.224022							
С	-2.419503	0.057904	-2.130283							
н	-1.242107	0.213733	-3.911222							
н	-3.367868	0.106533	-2.658031							
С	-2.433058	-0.060635	-0.725514							
Н	-3.385825	-0.092802	-0.210953							
С	-1.244914	-0.125981	-0.021155							
Ν	-1.185700	-0.278495	1.362668							
Ν	1.184094	-0.305638	1.357103							
С	-2.402618	-0.131431	2.127647							
н	-2.857405	0.868220	2.028894							
Н	-2.183000	-0.312611	3.182998							
н	-3.137417	-0.876838	1.810421							
С	2.407029	-0.187784	2.117661							
н	2.886103	0.800225	2.016043							
Н	3.121357	-0.952000	1.798019							
н	2.187116	-0.362521	3.174071							
С	0.007132	0.262430	1.976779							
Н	0.020162	1.372629	1.917776							
Н	0.006254	-0.019251	3.033266							

Thermodynamic Properties at 298.15 K

Zero Point Energy :	615.48	kJ/mol	(ZPE)
Temperature Correction :	32.49	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	647.97	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-612.875955	au	(Electronic Energy + Enthalpy Correction)
Entropy :	430.80	J/mol•K	
Gibbs Energy :	-612.924877	au	(Enthalpy - T*Entropy)
C _v :	215.58	J/mol•K	

2. [Rh₂(μ-CO)₂(PH₃)₄](Rh–Rh)

-				
Cart	esian Coordina	tes		
Ato	m x	У	z	
Rh	0.391384	1.294974	0.185677	
Rh	-0.350599	-1.301115	-0.213765	
С	-0.979758	0.433348	-1.001682	
С	1.106112	-0.450663	0.878486	
0	-1.770053	0.769728	-1.815207	
0	1.984911	-0.803088	1.587203	
Ρ	0.107220	3.208408	-1.141705	
Н	0.659776	3.147973	-2.438564	
н	0.616774	4.480585	-0.799278	
н	-1.183779	3.625631	-1.522793	
Ρ	1.408433	2.347260	2.015181	
н	2.423810	1.700793	2.751336	
Н	0.556718	2.644240	3.102348	
н	2.017794	3.620819	1.943045	
Ρ	-2.413361	-2.236621	-0.826080	
н	-3.369205	-2.378729	0.203127	
н	-2.549311	-3.543335	-1.350247	
н	-3.242543	-1.578384	-1.756401	
Ρ	0.842043	-3.311907	0.016030	
Н	2.033208	-3.405648	-0.734753	
Н	0.318120	-4.575032	-0.340462	
н	1.392307	-3.689239	1.258505	

Zero Point Energy :	320.40	kJ/mol	(ZPE)
Temperature Correction :	45.19	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	365.59	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-1818.094713	au	(Electronic Energy + Enthalpy Correction)
Entropy :	531.71	J/mol•K	
Gibbs Energy :	-1818.155094	au	(Enthalpy - T*Entropy)
C _v :	261.98	J/mol•K	

3. [Rh₂(μ-CO)₂(MeH₂Pm)₂](Rh–Rh)

Thermodynamic Properties at 298.15 K

Thermodynamic Properties at 298.15 K

Zero Point Energy :	1973.72	kJ/mol	(ZPE)
Temperature Correction :	118.11	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	2091.84	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-3353.443086	au	(Electronic Energy + Enthalpy Correction)
Entropy :	988.74	J/mol•K	
Gibbs Energy :	-3353.555367	au	(Enthalpy - T*Entropy)
C _v :	868.09	J/mol•K	

ELECTRONIC SUPPORTING INFORMATION

Cartesian Coordinates											
Aton	Atom x y z										
Rh	1.348682	-0.046792	1.076250								
Р	2.844071	1.419987	2.134769								
Р	2.830927	-1.473775	-0.050118								
0	-0.130130	-2.651958	0.827456								
Ν	4.446448	2.064565	0.014377								
Ν	4.421517	0.262976	-1.579715								
С	7.752386	1.989042	-1.674124								
С	6.411011	1.681748	-1.319873								
С	5.743147	0.621714	-1.998638								
С	3.743298	1.450421	-1.103977								
н	2.728521	1.200946	-0.784199								
н	3.682877	2.150204	-1.949613								
С	6.499386	3.346775	0.446276								
н	6.057748	3.906840	1.261696								
С	4.482857	-0.842381	-0.614655								
н	5.062397	-0.570955	0.282643								
н	5.010345	-1.669675	-1.100843								
с	-0.043090	-1.470434	0.955416								
c	5.768438	2.399011	-0.247301								
c	6.371961	-0.079697	-2.998043								
н	5.831955	-0.875436	-3.502308								
C	8.367665	1,251205	-2.718342								
н	9 390557	1 493670	-2 993371								
c	7 832324	3 633326	0.085882								
н	8 366432	4 395174	0.646781								
C C	8 450364	2 002/133	-0.954295								
с ц	0.430304 0.474079	2.332433	1 228221								
C C	7 605552	0.2420000	-1.228821								
с ц	9 190500	0.242570	-3.301030								
П 06	8.180599 1.2F1FC4	-0.312881	-4.158103								
кп	-1.351504	1 422705	1.077015								
r D	-2.040500	-1.455/65	2.125709								
r O	-2.029510	1.4/1510	-0.033231								
U N	0.125708	2.051/94	0.831004								
IN N	-4.433009	-2.000033	-0.007080								
	-4.420044	-0.258202	-1.594720								
C	-7.756932	-1.973463	-1.660353								
C	-6.410811	-1.672099	-1.319587								
C	-3.61//02	-2.706102	1.001912								
н	-2.800470	-3.285888	0.551006								
Н	-4.214682	-3.395523	1.600157								
C	-5.744351	-0.61/356	-2.007320								
C	-3./38859	-1.446566	-1.12/24/								
н	-2./22802	-1.19/036	-0.810970								
Н	-3.681959	-2.142889	-1.976043								
С	-6.495104	-3.320590	0.461963								
Н	-6.052220	-3.872529	1.282254								
С	-4.482465	0.842211	-0.624049								
Н	-5.061690	0.567424	0.272416								
Н	-5.008763	1.672423	-1.106583								
С	0.040127	1.470419	0.958074								
С	-5.761835	-2.387523	-0.249481								
С	-6.377030	0.082101	-3.005471								
н	-5.837814	0.874538	-3.515733								
С	-8.376388	-1.238550	-2.704327								
н	-9.402715	-1.477150	-2.969741								
С	-7.832801	-3.600977	0.115093								
н	-8.367803	-4.352755	0.688596								
С	-8.454955	-2.966877	-0.927095								

С	-7.704407	-0.237290	-3.357864
Н	-8.192921	0.316537	-4.154160
С	3.640141	2.698313	1.034848
Н	4.252779	3.356328	1.652362
Н	2.836974	3.308678	0.598539
С	-3.364756	2.995824	0.821609
Н	-2.463099	3.537957	1.120266
Н	-3.919472	2.725207	1.724901
Н	-3.986366	3.641446	0.191258
С	-2.160491	2.140125	-1.629758
Н	-1.219449	2.654077	-1.419661
Н	-2.864012	2.834181	-2.102598
Н	-1.967039	1.308446	-2.312049
С	-4.337583	-0.766538	2.970030
Н	-4.038700	0.025353	3.662598
Н	-4.871303	-1.547308	3.522858
Н	-5.015978	-0.339622	2.227039
С	-2.135281	-2.522150	3.426897
Н	-1.737368	-1.899661	4.233089
Н	-1.308822	-3.091597	2.995244
Н	-2.882526	-3.210156	3.838210
С	3.365687	-2.995469	0.831873
Н	3.990428	-3.641489	0.205019
Н	2.463916	-3.538323	1.128901
Н	3.917057	-2.721646	1.736230
С	2.166537	-2.147036	-1.624248
Н	2.870862	-2.843066	-2.093047
Н	1.975668	-1.317266	-2.309580
Н	1.224493	-2.659898	-1.415601
С	2.131315	2.504602	3.437814
Н	2.879921	3.185144	3.858898
Н	1.723816	1.879322	4.237033
Н	1.311292	3.082030	3.004466
С	4.322296	0.732978	2.986477
н	5.008148	0.316858	2.244030
н	4.012585	-0.069592	3.661690
н	4.851583	1.502657	3.558677

H -9.482289 -3.199340 -1.191209

Superposition of 30 HOMOs indicating no effective overlap between C–H and Rh

Dalton Transactions

ARTICLE

Table of selected inconclusive reaction conditions.

Complex	Reagent	Solvent	Temperature (°C)	Observation					
2a	DMAD	Toluene	25	No reaction.					
3a	Methyl propiolate	Toluene	25	No reaction.					
2a	DMAD	Toluene	110	Loss of all ¹ H and ³¹ P NMR signals other than DMAD.					
3a	Methyl propiolate	Toluene	110	³¹ P NMR singlets at 24.5 ppm, 10.7 ppm. Small ¹ H signals at 12, 9 ppm, messy ¹ H NMR resonances between 5 and 6 ppm.					
2a	СО	CH_2CI_2	25	Loss of all ¹ H and ³¹ P NMR signals. IR too broad to assign peaks.					
2a	H ₂	CH ₂ Cl ₂	25	Loss of all ¹ H and ³¹ P NMR signals. IR too broad to assign peaks.					
3a	H ₂	CH ₂ Cl ₂	25	Too insoluble to observe ³¹ P signals. Variety of ¹ H signals between 5 and 6 ppm indicating no major product. Nothing separable on workup.					
2a	C ₃ Ph ₃ PF ₆	CH_2CI_2	25	No observable reaction.					
2a	Diphenylacetylene	Toluene	110	No observable reaction.					
2a	AgPF ₆	MeCN	25	Highly sensitive and insoluble yellow product which turned brown before NMR acquisition. No ³¹ P peaks of the brown product were observed.					
2a	TBAF, 1,4-bis- trimethylsilylbutadiyne			Too insoluble to observe ³¹ P NMR resonances. Multiple ¹ H peaks between 4.5 and 7.0 ppm due to several PhH ₂ Pm ligand systems. None correspond to that of 6 . Nothing separable on workup.					
3a	KC ₈	Toluene	25	Clean formation of a new, still insoluble, symmetrical product (δ_P = 17.2, ${}^{1}J_{RhP}$ = 188 Hz) which decomposed over time or upon workup.					
4	CO ₂	THF	25	Lack of repeatability in results. By ³¹ P{ ¹ H} NMR we have observed sharp double 23.7 ppm (78 Hz), 19.45 ppm (125 Hz), 22.18 ppm (155 Hz), 26.12 ppm (193 Hz 20.22 ppm (140 Hz). There are also singlets at 25.0 ppm (unknown) and -26 p					

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

				(Free PhH ₂ Pm ligand). Proved inseparable and prone to further reaction with atmosphere of .
4	CS ₂	THF	25	Loss of all NMR resonances presumably due to extreme broadening or precipitation from the mixture (no major ppt was observed by eye however) nothing separable on workup.
4	H ₂	THF	25	Busy forest of ³¹ P NMR peaks between 5 and 45 ppm, unknown splitting. At least 7 resonances between -8 and -13 ppm by ¹ H NMR indicative of metal hydride species.
4	Dimethylacetylene dicarboxylate	THF	25	By ³¹ P{ ¹ H} NMR singlets at 10.3 and 25.9 ppm were observed along with two doublets of doublets (49.9 ppm, 159 and 14 Hz), (26.9 ppm, 124 and 14 Hz couplings). Over time rearranged to 4 new doublets and 6 singlets. No species proved separable for purification.
4	1,4-diphenylbutadiyne	THF	25	Various broad peaks between 0 and 60 ppm by ³¹ P{ ¹ H} NMR spectroscopy. One sharp singlet at 25 ppm. ¹ H NMR dominated by excess organic reagent.
4	1,4- bis(trimethylsilyl)butadiyne	THF	25	Too insoluble to observe ³¹ P NMR resonances. Multiple ¹ H peaks between 4.5 and 7.0 ppm due to several PhH ₂ Pm ligand systems. Nothing separable on workup.
4	S ₈	THF	25	Loss of all NMR resonances, possibly due to precipitation, difficult to know due to excess S ₈ in solution. Nothing separable on workup.
4	Ferrocenium hexafluorophosphate	C_6D_6	25	Slow (multi-day), clean conversion to 5 .
5	benzaldehyde	-	110	Decomposition. Loss of starting material signals and formation of ³¹ P{ ¹ H} NMR singlets at 43.9 and 28.7 ppm.

ARTICLE

IR (ATR, cm⁻¹) for [RhCl(CO)(μ -PhH₂Pm)]₂ (**2a**).

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

IR (CH₂Cl₂, cm⁻¹) for [RhCl(CO)(μ -PhH₂Pm)]₂ (**2a**).

12 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

¹H NMR (700 MHz, CDCl₃, 298K) for [RhCl(CO)(μ -PhH₂Pm)]₂ (**2a**).

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 13

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

³¹P{¹H} NMR (283 MHz, CDCl₃, 298 K) for [RhCl(CO)(μ-PhH₂Pm)]₂ (**2a**).

This journal is © The Royal Society of Chemistry 2023

14 | Dalton Trans., 2023, 00, 1-3

ELECTRONIC SUPPORTING INFORMATION

¶.

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

944 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used:

MS (ESI, +ve ion) for $[RhCl(CO)(\mu-PhH_2Pm)]_2$ (2a).

This journal is © The Royal Society of Chemistry 2023

IR (ATR, cm⁻¹) for [RhCl(CO)(μ -CyH₂Pm)]₂ (**2b**).

16 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATION

IR (CH₂Cl₂, cm⁻¹) for [RhCl(CO)(μ -CyH₂Pm)]₂ (**2b**).

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

18 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 19

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 25.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 737 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-80 H: 0-120 N: 1-4 O: 0-2 P: 0-4 35CI: 0-1 37CI: 0-1 103Rh: 0-2

MS (ESI, +ve ion) for $[RhCl(CO)(\mu-CyH_2Pm)]_2$ (2b).

20 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

IR (ATR, cm⁻¹) for [RhCl(CS)(μ -PhH₂Pm)]₂ (**3a**).

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

IR (CH₂Cl₂, cm⁻¹) for [RhCl(CS)(μ -PhH₂Pm)]₂ (**3a**).

22 | Dalton Trans., 2023, 00, 1-3

This journal is © The Royal Society of Chemistry 2023

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 23

ELECTRONIC SUPPORTING INFORMATIO

24 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 25

-1(

¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) for [RhCl(CS)(μ-PhH₂Pm)]₂ (**3a**).

44	42	40	38	36	34	32	30	28	26	24	22	20	18	16	14	12	10	8	6	4	2	0	-2
N/W/N	M ay May	Milli	hathlalui	NAMA PA	di kalina Mahalina	niuliyyyn	uli y y de la constantia d	iannilin	ndettaali	lin finis	NAN AMAN	l differences			William	hin hin	n de la constant	lojud najle	hiller/n	n ng pagalan ng magalan ng magala Ng magalan ng	hinni	ianananan I	11414 1 44
-19	⁰C										L.	n	Mikhaliwa	lita n									
1. Harmon	inuna	(Langlinedia)	unch vizzbaji	luhnfel-feyin	nnproduta	Angle Angle An	unan	MANIA	Ningadi	www.hurladi.va	wherpited 4114/19	ann mainteile	iquuallunga	iyada kata kata kata kata kata kata kata k	(N HAIDAINNI	latinitia	inti Ange Norto	11411114	ulyihimhid;	w/Milling	hahiltaballa	ukuna/4ph	nyka wani k
-10	⁰C																						
(antonion)	hlathald	publicity h	utantialia	palaphanaka	nini ja manta	internation of the	nheripan	armah	(m ^{ile} /(nmine	ndpyllog mid flo	Herbuchden	aller MP4	Mellin Halen og Jacks	widi/watari)	lauts teenin	(III waa ayo	in the second	nogenphateriteri	14 Martin	Whatmaphaliji	y the state of the	internation	Northfolio (
0 9	С																						
najdalejske	ujid haqad	n n han han h	Nylminikidasy	nin ny katalon	ynelladdiwy	(vendagerindes)(fride)	4.1941./v.00044	erden kontek	N/desidente	with an interview of the	handhada	Protonil W	alife ball	ehentennen	hangunanan	miyidaliyita	n.V.J.marahladi	ahunna ()	davinan managa	u, tigh,t rituti	Vennini	n a for the state of the state	luaniditu
22 (с											Å.											
lud i filiy anyi di	Handolinda	ulie,traine	Nijuania	lendrallskelp	ion privili	alikaliki nela	iyyehitahi	int the data (Kiridali <mark>(</mark> aninga	philophysion	inan kindulai	product VI	ibani (fila)	niime.(oni)	uta appendia	Vinjan in i/Anj	naanula	Hora diyafa (of a work of the	ninda ya ka	hahahaha	hingana	himpon
40 (с											N											
inder#aboled	ndająvijąd	nju l ikudin	, Leophillion (nily, dy is in <mark>the</mark> (1	i de la compañía de l	rhandahali	43,1401441	kulminikijio	aropentati	inglivlanda	uperita Milita	Intelline W	nihihihint	nuuudunia	olutharid	e inipun	en an	Hestanlahilan	pula valiti and	openhild growing of	nillinunganta	an Barris	han the state of the
50 Y	С											- 11											

Variable temperature ${}^{31}P{}^{1}H$ NMR (163 MHz, CDCl₃, 298 K) for [RhCl(CS)(μ -PhH₂Pm)]₂ (**3a**).

This journal is © The Royal Society of Chemistry 2023

26 | Dalton Trans., 2023, **00**, 1-3

ELECTRONIC SUPPORTING INFORMATION

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron Ions 88 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-40 H: 0-60 11B: 0-1 N: 0-2 P: 0-2 S: 0-1 Rh: 0-1

MS (ESI, +ve ion) for $[RhCl(CS)(\mu-PhH_2Pm)]_2$ (3a).

This journal is © The Royal Society of Chemistry 2023

Please do not adjust margins

IR (ATR, cm⁻¹) for [RhCl(CS)(μ -CyH₂Pm)]₂ (**3b**).

28 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATION

IR (CH₂Cl₂, cm⁻¹) for [RhCl(CS)(μ -CyH₂Pm)]₂ (**3b**).

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 715 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-80 H: 0-120 N: 1-4 S: 0-2 P: 0-4 35CI: 0-1 37CI: 0-1 103Rh: 0-2

MS (ESI, +ve ion) for $[RhCl(CS)(\mu-CyH_2Pm)]_2$ (3b).

30 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

IR (ATR, cm-1) for $[Rh_2(\mu-CO)_2(PhH_2Pm)_2]$ (4).

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 31

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

IR (THF, cm-1) for $[Rh_2(\mu-CO)_2(PhH_2Pm)_2]$ (4).

32 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

Dalton Transactions

¹H NMR (700 MHz, C₆D₆, 298 K) for [Rh₂(μ-CO)₂(PhH₂Pm)₂] (**4**).

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 33

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

³¹P{¹H} NMR (283 MHz, C₆D₆, 298 K) for [Rh₂(µ-CO)₂(PhH₂Pm)₂] (**4**).

34 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

 $^{13}C{^{1}H} NMR (176 MHz, C_6D_6, 298 K) for [Rh_2(\mu-CO)_2(PhH_2Pm)_2] (4).$

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 35

36 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 37

38 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATION

IR (ATR, cm-1) for [Rh(CO)(PhPm)]BF₄ (5).

This journal is © The Royal Society of Chemistry 2023

Please do not adjust margins

40 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

¹H NMR (800 MHz, (CD₃)₂CO, 298 K for [Rh(CO)(PhPm)]BF₄ (5).

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 41

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

¹³C{¹H} NMR (201 MHz, (CD₃)₂CO, 298 K) for [Rh(CO)(PhPm)]BF₄ (5).

42 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATION

HMBC NMR ((CD₃)₂CO, 298 K) for [Rh(CO)(PhPm)]BF₄ (5).

44 | Dalton Trans., 2023, 00, 1-3

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATION

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Odd and Even Electron Ions 77 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-40 H: 0-40 N: 0-2 O: 0-3 P: 0-2 103Rh: 0-1

MS (ESI, +ve ion) for $[Rh(CO)(PhPm)]BF_4$ (5).

This journal is © The Royal Society of Chemistry 2023

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

IR (ATR, cm^{-1}) for [Rh(CO)(PhPm)]PF₆ (**5**).

46 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

¹H NMR (400 MHz, CDCl₃, 298 K) for [Rh(CO)(PhPm)]PF₆ (**5**).

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

³¹P{¹H} NMR (283 MHz, CDCl₃, 298 K) for [Rh(CO)(PhPm)]PF₆ (**5**).

This journal is © The Royal Society of Chemistry 2023

48 | Dalton Trans., 2023, 00, 1-3

IR (ATR, cm⁻¹) for [Rh(CO)(C \equiv CSiMe₃)(μ -PhH₂Pm)]₂ (6).

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 49

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 28.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Odd and Even Electron lons 847 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-5 O: 0-5 P: 0-2 103Rh: 0-1

LJW-371/AJ 66943 1969 50 (0.11 1: TOF MS E	17) Cm (37: S+	50)				SYNAP	ſG2-Si#	NotSet					04-Feb-2022 13:55:52
100						695.	0902						1.06e+006
%68	86.1066	688.269	90 6	90.9866	692.8361	694.1588	696.0	925 697.0959	699.0867	701.0563	702.0598	704.0605	705.2569
6	586.0	688.0	6	90.0	692.0	694.0	696.	0 698.0	0 700	.0 70)2.0	704.0	706.0
Minimum: Maximum:			25.0	3.0	-1.5 28.0								
Mass 695.0902	Calc. 695.0	Mass 888	mDa 1.4	PPM 2.0	DBE 26.0	i-FIT 881.2	Norm n/a	Conf(%) n/a	Formula C38 H30	N2 O P2	103Rh		

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 28.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Odd and Even Electron lons 903 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-5 O: 0-5 P: 0-2 103Rh: 0-1

LJW-371/AJ 66943 1969 50 (0.117 1: TOF MS ES) Cm (37:50) +		SYNAPTG2-Si#NotSet										04-Feb-2022 13:55:52
100					667.095	50							2.02e+005
%- - - 658.2	339 659.2329	662	2.8170	665.0717		668.0970	9.1017 670).1035 e	672.2959	672.9	479 675.27	81_676.919	8.677.4688
658.0	660.0	662.0	664.	0 66	6.0	668.0	670.0	6	572.0	67	4.0	676.0	678.0
Minimum: Maximum:		25.0	3.0	-1.5 28.0									
Mass 667.0950	Calc. Mass 667.0939	mDa 1.1	PPM 1.6	DBE i- 25.0 60	-FIT 1 52.9 1	Norm n/a	Conf(%) n/a	Formu C37 H	la 30 N2	P2 10)3Rh		

MS (ESI, +ve ion) for $[Rh(CO)(PhPm)]PF_6$ (5).

50 | Dalton Trans., 2023, 00, 1-3

IR (CH₂Cl₂, cm⁻¹) for [Rh(CO)(C=CSiMe₃)(μ -PhH₂Pm)]₂(**6**).

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

¹H NMR (700 MHz, CD₂Cl₂, 213 K) for [Rh(CO)(C=CSiMe₃)(μ-PhH₂Pm)]₂ (**6**).

52 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATION

Variable temperature ¹H NMR (700 MHz, CD₂Cl₂) for [Rh(CO)(C=CSiMe₃)(µ-PhH₂Pm)]₂ (6).

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 53

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

³¹P{¹H} NMR (283 MHz, CD₂Cl₂, 213 K) for [Rh(CO)(C=CSiMe₃)(μ-PhH₂Pm)]₂ (6).

54 | Dalton Trans., 2023, 00, 1-3

This journal is © The Royal Society of Chemistry 2023

Variable temperature ³¹P{¹H} NMR (700 MHz, CD₂Cl₂) for [Rh(CO)(C=CSiMe₃)(µ-PhH₂Pm)]₂ (6).

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 55

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

IR (ATR, cm⁻¹) for [Rh(C \equiv CSiMe₃)(PhPm)] (7).

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 57

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

IR (CH₂Cl₂, cm⁻¹) for [Rh(C \equiv CSiMe₃)(PhPm)] (7).

58 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

¹H NMR (800 MHz, C_6D_6 , 298K) for [Rh(C=CSiMe₃)(PhPm)] (7).

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

60 | Dalton Trans., 2023, 00, 1-3

This journal is © The Royal Society of Chemistry 2023

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

¹³C{¹H} NMR (201 MHz, C₆D₆, 298K) for [Rh(C \equiv CSiMe₃)(PhPm)] (7).

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

HSQC NMR (C_6D_6 , 298K) for [Rh(C = CSiMe₃)(PhPm)] (7).

HMBC NMR (C_6D_6 , 298K) for [Rh(C=CSiMe₃)(PhPm)] (7).

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 30.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron Ions 69 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-2 Si: 0-1 P: 0-2 103Rh: 0-1

LJW-361/AJ 66498 0278 64 (0.143) 1: TOF MS ES+	Cm (64:85)				SYNAF	PTG2-Si#No	ltSet					19-Mar-2021 14:31:32	1 2
100				763.1336 764	1380 765.14	405	767.1311					6.89e+005	5
0 ¹	758.1168 758.0	760.1204 760.0	762.0	764	 .0	766.0		769.1389 770.	0 0	772.1016 772.0	774.0	//4.6211 ≁r₁+++ m/z	:
Minimum: Maximum:		5.0	3.0	-1.5 30.0									
Mass 763.1336	Calc. Mass 763.1335	mDa 0.1	PPM 0.1	DBE 27.0	i-FIT 1856.2	Norm n/a	Conf(%) n/a	Formula C42 H38 N	12 Si P:	2 103Rh			

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 30.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron lons 390 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-2 O: 0-4 Si: 0-1 P: 0-2 103Rh: 0-1

LJW-361/AJ 66498 0278 64 (0.143) Cm (64:85) 1: TOF MS ES+						SYNAPTG2-Si#NotSet							19-Mar-2021 14:31:32			
100					779.128	7 780.	1316									1.22e+006
%	775.1189	776.1154	777.1255	778.1215			78 780.638	1.1382	782.1420	783.1	1292	784.1272	785.1212	786.1188	787.1232	m/z
0 111111	775.0	776.0	777.0	778.0	779.0	780.	0 78	1.0	782.0	783.	0	784.0	785.0	786.0	787.0	788.0
Minimum: Maximum:			5.0	3.0	-1.5 30.0											
Mass 779.1287	Calc 779.	. Mass 1284	mDa 0.3	PPM 0.4	DBE 27.0	i-F 189	IT 1 1.0 1	lorm n∕a	Conf(% n/a	s) Fo Cé	orm 42 1	ula H38 N2	O Si P2	103Rh		

MS (ESI, +ve ion) for $[Rh(C \equiv CSiMe_3)(PhPm)]$ (7).

64 | Dalton Trans., 2023, 00, 1-3

IR (ATR, cm^{-1}) for [Rh(C \equiv CPh)(PhPm)] (8).

This journal is © The Royal Society of Chemistry 2023

Please do not adjust margins

IR (CH₂Cl₂, cm⁻¹) for [Rh(C \equiv CPh)(PhPm)] (8).

66 | Dalton Trans., 2023, 00, 1-3

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATION

¹H NMR (800 MHz, C_6D_6 , 298K) for [Rh(C \equiv CPh)(PhPm)] (7).

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 00, 1-3 | 67

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

³¹P{¹H} NMR (162 MHz, C₆D₆, 298K) for [Rh(C \equiv CPh)(PhPm)] (8).

68 | Dalton Trans., 2023, 00, 1-3

This journal is © The Royal Society of Chemistry 2023

Dalton Transactions

¹³C{¹H} NMR (201 MHz, C₆D₆, 298K) for [Rh(C \equiv CPh)(PhPm)] (8).

ELECTRONIC SUPPORTING INFORMATIO

Dalton Transactions

 $^{1}H^{-13}CHMBC (C_{6}D_{6}, 298K) \text{ for } [Rh(C \equiv CPh)(PhPm)] (8).$

70 | Dalton Trans., 2023, **00**, 1-3

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATION

MS (ESI, +ve ion) for $[Rh(C \equiv CPh)(PhPm)]$ (8).

This journal is C The Royal Society of Chemistry 2023