SUPPORTING INFORMATION

Replacement of the phosphodiester backbone between canonical nucleosides with dirhenium carbonyl "click" linker

- a new class of luminescent organometallic dinucleoside phosphate mimics

Joanna Skiba^a, Aleksandra Kowalczyk^b, Aleksander Gorski^c, Natalia Dutkiewicz^c, Magdalena Gapińska^d, Józef Stróżek^a,

Krzysztof Woźniak^e, Damian Trzybiński^e, and Konrad Kowalski^{a,*}

 ^aFaculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
 ^bDepartment of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
 ^cInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
 ^dFaculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland

^eFaculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland

Contents

Fig. S1 ¹ H-NMR spectrum of 1 in DMSO-d ₆ (600 MHz)	S3
Fig. S2 ¹ H-NMR spectrum of 2 in CDCl ₃ (600 MHz)	S4
Fig. S3 ¹ H-NMR spectrum of 4 in DMSO-d ₆ (600 MHz)	S5
Fig. S4 ¹ H-NMR spectrum of 5 in DMSO-d ₆ (600 MHz)	S6
Fig. S5 ¹ H-NMR spectrum of 6 in DMSO-d ₆ (600 MHz)	S7
Fig. S6 ¹ H-NMR spectrum of 7 in DMSO-d ₆ (600 MHz)	S8
Fig. S7 ¹ H-NMR spectrum of 8 in DMSO-d ₆ (600 MHz)	S9
Fig. S8 ¹ H-NMR spectrum of 9 in DMSO-d ₆ (600 MHz)	S10
Fig. S9 ¹ H-NMR spectrum of 10 in DMSO-d ₆ (600 MHz)	S11
Fig. S10 ¹ H-NMR spectrum of 11 in DMSO-d ₆ (600 MHz)	S12
Fig. S11 Inclination of the planes within the coordination spheres of Re1 and Re2 in 2 and 8	S13
Fig. S12 Individual molecules of 8 held together by the O-H…O hydrogen bonds arranged in R22(8) motif	S14
Fig. S13 Luminescence of 5 in air-equilibrated DMSO solution at ambient temperature	S15
Fig.S14 Luminescence of HeLa cells after 30 min incubation with 4-6, 10 and 11	S16
Table S1 Crystal data and structure refinement for investigated compounds	S17
Table S2 Bond lengths for 2 [Å]	S19
Table S3 Values of valence angles for 2 [°]	S20
Table S4 Values of torsion angles for 2 [°]	S21
Table S5 Bond lengths for 8 [Å]	S22
Table S6 Values of valence angles for 8 [°]	S23
Table S7 Values of torsion angles for 8 [°]	S24
Details on DFT Calculations	S25

Fig. S1 ¹H-NMR spectrum of 1 in DMSO-d₆ (600 MHz)

Fig. S3 ¹H-NMR spectrum of 4 in DMSO-d₆ (600 MHz)

Fig. S5 ¹H-NMR spectrum of 6 in DMSO-d₆ (600 MHz)

Fig. S6 ¹H-NMR spectrum of 7 in DMSO-d₆ (600 MHz)

S8

Fig. S7 ¹H-NMR spectrum of 8 in DMSO-d₆ (600 MHz)

Fig. S8 ¹H-NMR spectrum of **9** in DMSO-d₆ (600 MHz)

Fig. S9 ¹H-NMR spectrum of 10 in DMSO-d₆ (600 MHz)

Fig. S10 ¹H-NMR spectrum of 11 in DMSO-d₆ (600 MHz)

Fig. S21 inclination of the planes defined by the equatorial C-atoms and bridging Cl atoms within the coordination spheres of Re1 and Re2 in 2 and 8

Fig. S22 Individual molecules of 8 held together by the O–H…O hydrogen bonds arranged in R22(8) motif

Fig. S13 Luminescence of 5 in air-equilibrated DMSO solution at ambient temperature

Fig. 14 Comparison of luminescence of HeLa cells after 30 min incubation with dinucleosides (**4, 5, 6**) and nucleosides (**10, 11**) given at a concentration of 10 μM with control cells (Cont.). Left column – luminescence images, right column - merged images of luminescence and transmitted light. Excitation/emission - 405/500 – 700 nm. Bars = 50 μm.

Identification code	2	8
Empirical formula	$C_{17}H_{11}Cl_2N_3O_6Re_2$	$C_{15}H_{12}Cl_2N_2O_8Re_2$
Formula weight	796.59	791.57
Temperature/K	100(2)	100(2)
Crystal system	monoclinic	monoclinic
Space group	$P2_{1}/n$	$P2_1/n$
a/Å	19.1476(4)	9.8252(4)
b/Å	6.13921(8)	21.1777(7)
$c/\text{\AA}$	20.3399(4)	10.3389(4)
$\alpha/^{\circ}$	90	90
β°	115.439(2)	107.937(5)
γ/°	90	90
Volume/Å ³	2159.15(8)	2046.70(15)
Ζ	4	4
$ ho_{ m calc} { m g/cm^3}$	2.451	2.569
μ/mm^{-1}	24.224	25.605
F(000)	1464.0	1456.0
Crystal size/mm ³	$0.24 \times 0.05 \times 0.03$	0.16 imes 0.11 imes 0.06
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.394 to 134.158	8.35 to 134.142
	$-21 \le h \le 22,$	$-11 \le h \le 11,$
Index ranges	$-7 \le k \le 7$,	$-17 \le k \le 25,$
	$-24 \le l \le 23$	$-12 \le l \le 12$
Reflections collected	17830	7816
Independent reflections	$3855 [R_{int} = 0.0411, R_{int} = 0.0322]$	$3647 [R_{int} = 0.0338, R_{int} = 0.0382]$
Data/restraints/parameters	3855/0/271	3647/1/265
Goodness-of-fit on F^2	1 064	1 091
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0270 \text{ w}R_2 = 0.0643$	$R_1 = 0.0389 \text{ w} R_2 = 0.1028$
Final <i>R</i> indexes [all data]	$R_1 = 0.0305, wR_2 = 0.0663$	$R_1 = 0.0439$, $wR_2 = 0.1063$
Largest diff. peak/hole / e Å ⁻³	1.35/-0.89	2.62/-1.43

Table S1. Crystal data and structure refinement for 2 and 8

Atom	Atom	Length/A	Atom	Atom	Length/A
C1	C2	1.408(8)	C13	Re1	1.942(7)
C1	N2	1.328(7)	C14	03	1.153(7)
C2	C3	1.351(8)	C14	Rel	1.899(6)
C2	C5	1.508(8)	C15	04	1.142(8)
C3	C4	1.396(9)	C15	Re2	1.905(6)
C4	N1	1.335(7)	C16	05	1.152(7)
C5	N3	1.455(7)	C16	Re2	1.914(6)
C6	C7	1.478(9)	C17	06	1.157(7)
C6	N3	1.453(7)	C17	Re2	1.907(6)
C7	C8	1.196(10)	Cl1	Re1	2.4830(12)
C9	C10	1.493(9)	Cl1	Re2	2.4925(13)
C9	N3	1.478(7)	Cl2	Re1	2.4978(12)
C10	C11	1.180(10)	Cl2	Re2	2.5034(12)
C12	01	1.140(7)	N1	N2	1.354(6)
C12	Re1	1.918(6)	N1	Re1	2.204(5)
C13	02	1.130(8)	N2	Re2	2.204(4)

T	able S	53. Va	lues of v	alenc	e ang	les foi	: 2 [°].
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N2	C1	C2	124.0(5)	C12	Re1	Cl1	95.76(17)
C1	C2	C5	120.1(5)	C12	Re1	Cl2	175.34(17)
C3	C2	C1	116.5(5)	C12	Re1	N1	92.3(2)

C3	C2	C5	123.3(5)	C13	Re1	Cl1	93.08(19)
C2	C3	C4	118.8(5)	C13	Re1	Cl2	93.72(19)
N1	C4	C3	122.3(5)	C13	Re1	N1	174.8(2)
N3	C5	C2	110.7(5)	C14	Re1	C12	89.3(2)
N3	C6	C7	111.4(5)	C14	Re1	C13	90.2(3)
C8	C7	C6	176.8(7)	C14	Re1	Cl1	173.99(18)
N3	C9	C10	113.0(5)	C14	Rel	Cl2	93.34(16)
C11	C10	C9	175.2(7)	C14	Re1	N1	94.4(2)
01	C12	Rel	178.6(5)	Cl1	Re1	Cl2	81.41(4)
O2	C13	Re1	177.9(6)	N1	Re1	Cl1	82.15(11)
O3	C14	Re1	177.9(5)	N1	Re1	Cl2	83.63(12)
O4	C15	Re2	177.6(6)	C15	Re2	C16	87.8(3)
O5	C16	Re2	178.9(6)	C15	Re2	C17	89.2(2)
06	C17	Re2	178.5(5)	C15	Re2	Cl1	175.57(18)
Re1	Cl1	Re2	90.91(4)	C15	Re2	Cl2	94.46(17)
Re1	Cl2	Re2	90.31(4)	C15	Re2	N2	96.1(2)
C4	N1	N2	119.9(5)	C16	Re2	Cl1	92.81(19)
C4	N1	Re1	120.1(4)	C16	Re2	Cl2	95.49(17)
N2	N1	Rel	120.1(3)	C16	Re2	N2	175.8(2)
C1	N2	N1	118.4(4)	C17	Re2	C16	88.2(2)
C1	N2	Re2	122.0(4)	C17	Re2	Cl1	95.18(17)
N1	N2	Re2	119.5(3)	C17	Re2	Cl2	174.85(16)
C5	N3	C9	111.6(5)	C17	Re2	N2	93.3(2)
C6	N3	C5	110.8(5)	Cl1	Re2	Cl2	81.12(4)
C6	N3	C9	111.2(5)	N2	Re2	Cl1	83.15(12)
C12	Re1	C13	90.1(2)	N2	Re2	Cl2	82.75(12)

Table S4. Values of torsion angles for **2** [°].

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
C1	C2	C3	C4	-1.6(8)	C4	N1	N2	Re2	175.8(4)
C1	C2	C5	N3	-167.5(5)	C5	C2	C3	C4	176.7(5)
C2	C1	N2	N1	-0.3(8)	C7	C6	N3	C5	-175.2(5)
C2	C1	N2	Re2	-177.5(4)	C7	C6	N3	C9	60.1(7)
C2	C3	C4	N1	-0.1(8)	C10	C9	N3	C5	-63.3(7)
C2	C5	N3	C6	76.3(6)	C10	C9	N3	C6	61.0(7)
C2	C5	N3	C9	-159.1(5)	N2	C1	C2	C3	1.9(8)
C3	C2	C5	N3	14.1(8)	N2	C1	C2	C5	-176.6(5)
C3	C4	N1	N2	1.7(8)	Re1	N1	N2	C1	178.2(4)
C3	C4	N1	Re1	-178.0(4)	Re1	N1	N2	Re2	-4.4(5)
C4	N1	N2	C1	-1.5(7)					

 Table S5. Bond lengths for 8 [Å].

 Atom Atom Length/Å Atom Atom Length/Å

C1	C2	1.412(13)	C12	05	1.173(11)
C1	N2	1.337(11)	C12	Rel	1.892(10)
C2	C3	1.362(14)	C13	06	1.176(11)
C2	C5	1.500(13)	C13	Re2	1.889(10)
C3	C4	1.384(13)	C14	07	1.140(10)
C4	N1	1.341(11)	C14	Re2	1.922(7)
C5	C6	1.554(13)	C15	08	1.170(11)
C6	C7	1.533(13)	C15	Re2	1.897(9)
C7	C8	1.508(13)	Cl1	Rel	2.5033(19)
C8	C9	1.489(13)	Cl1	Re2	2.4921(19)
C9	01	1.306(11)	Cl2	Rel	2.503(2)
C9	O2	1.227(11)	Cl2	Re2	2.4883(19)
C10	O3	1.148(11)	N1	N2	1.356(10)
C10	Rel	1.905(9)	N1	Rel	2.204(7)
C11	O4	1.130(11)	N2	Re2	2.182(7)
C11	Rel	1.935(9)			

 Table S6. Values of valence angles for 8 [°].

Ta	ble S	6. Va	lues of v	alence	e angl	es for	8 [°].
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N2	C1	C2	124.9(9)	C10	Re1	Cl2	174.3(3)
C1	C2	C5	120.2(9)	C10	Re1	N1	95.1(3)
C3	C2	C1	116.3(9)	C11	Re1	Cl1	95.9(3)
C3	C2	C5	123.6(9)	C11	Re1	Cl2	96.0(3)
C2	C3	C4	118.3(9)	C11	Re1	N1	178.2(3)
N1	C4	C3	123.1(9)	C12	Re1	C10	89.8(4)
C2	C5	C6	111.4(8)	C12	Re1	C11	89.2(4)
C7	C6	C5	110.9(8)	C12	Re1	Cl1	173.8(3)
C8	C7	C6	110.7(8)	C12	Re1	Cl2	95.4(3)
C9	C8	C7	114.2(8)	C12	Re1	N1	92.0(3)

01	C9	C8	114.5(8)	Cl1	Re1	Cl2	80.61(6)
02	C9	C8	122.6(8)	N1	Re1	Cl1	82.90(18)
02	C9	01	122.9(8)	N1	Re1	Cl2	82.46(19)
03	C10	Rel	177.0(7)	C13	Re2	C14	89.6(4)
04	C11	Rel	176.8(8)	C13	Re2	C15	87.5(4)
05	C12	Rel	178.6(9)	C13	Re2	Cl1	174.0(3)
06	C13	Re2	178.7(8)	C13	Re2	Cl2	93.7(3)
07	C14	Re2	179.0(9)	C13	Re2	N2	94.4(3)
08	C15	Re2	176.9(8)	C14	Re2	Cl1	93.7(3)
Re2	Cl1	Rel	90.78(6)	C14	Re2	Cl2	93.6(3)
Re2	Cl2	Rel	90.87(6)	C14	Re2	N2	175.4(3)
C4	N1	N2	120.4(7)	C15	Re2	C14	89.7(4)
C4	N1	Rel	120.2(6)	C15	Re2	Cl1	97.4(3)
N2	N1	Rel	119.4(5)	C15	Re2	Cl2	176.4(3)
C1	N2	N1	117.1(7)	C15	Re2	N2	92.8(3)
C1	N2	Re2	122.2(6)	Cl2	Re2	Cl1	81.12(7)
N1	N2	Re2	120.7(5)	N2	Re2	Cl1	82.1(2)
C10	Re1	C11	86.4(4)	N2	Re2	Cl2	83.78(19)
C10	Re1	Cl1	94.0(2)				

T.L. 07 1	K 7 - 1	- f	A!	1	f	0	
I able S/.	values	OT	torsion	angles	tor	ð	۱ × ۱.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°	
C1	C2	C3	C4	2.0(13)	C4	N1	N2	Re2	-176.9(6)	
C1	C2	C5	C6	-130.9(9)	C5	C2	C3	C4	-178.6(9)	
C2	C1	N2	N1	0.4(12)	C5	C6	C7	C8	-165.9(8)	

C2	C1	N2	Re2	178.0(7)	C6	C7	C8	C9	-167.2(8)
C2	C3	C4	N1	-1.1(14)	C7	C8	C9	O1	-149.8(9)
C2	C5	C6	C7	68.6(10)	C7	C8	C9	O2	33.1(13)
C3	C2	C5	C6	49.7(12)	N2	C1	C2	C3	-1.8(13)
C3	C4	N1	N2	-0.4(13)	N2	C1	C2	C5	178.8(8)
C3	C4	N1	Re1	178.0(7)	Re1	N1	N2	C1	-177.7(6)
C4	N1	N2	C1	0.7(11)	Re1	N1	N2	Re2	4.7(8)

Table S8. DFT optimized ground state (S_0) and T_1 state geometry of **2** in cartesian (XYZ) coordinates.

		State S ₀				State T ₁	
С	-1.851985000	0.753659000	-0.326587000	С	-1.950525000	0.546544000	-0.498222000
Η	-2.021113000	1.837778000	-0.255729000	Н	-2.226433000	1.611903000	-0.433304000
С	-2.915810000	-0.119419000	-0.526258000	С	-2.916988000	-0.393837000	-0.767818000
С	-2.585245000	-1.459326000	-0.585469000	С	-2.472674000	-1.739599000	-0.813909000
Н	-3.352431000	-2.230261000	-0.732269000	Н	-3.162321000	-2.572687000	-0.985824000
С	-1.254192000	-1.797610000	-0.450363000	С	-1.128705000	-1.944848000	-0.606517000
Н	-0.929001000	-2.845679000	-0.491260000	Н	-0.720870000	-2.968220000	-0.637122000
С	-4.308443000	0.381724000	-0.700011000	С	-4.330696000	-0.026474000	-1.039882000
Н	-4.436144000	1.335764000	-0.128703000	Н	-4.504172000	1.048515000	-0.771386000
Н	-4.420003000	0.677121000	-1.765031000	Н	-4.517269000	-0.084219000	-2.136698000
С	-6.530833000	-0.432431000	-1.080054000	С	-6.570028000	-0.875597000	-0.966066000
Н	-7.170539000	-1.316875000	-0.883637000	Н	-7.176853000	-1.683326000	-0.507220000
Н	-6.345744000	-0.448042000	-2.172760000	Н	-6.513431000	-1.128341000	-2.045172000
С	-7.253023000	0.781341000	-0.719098000	С	-7.255073000	0.400325000	-0.800711000
C	-7.795805000	1.807309000	-0.373101000	С	-7.757068000	1.487951000	-0.628622000

_	Н	-8.300705000	2.715363000	-0.081440000	Н	-8.233992000	2.443639000	-0.488030000
	С	-5.421861000	-0.813546000	1.021264000	С	-5.220194000	-0.827608000	1.018006000
	Н	-5.912374000	0.058487000	1.527089000	Н	-5.642657000	0.144637000	1.387915000
	Н	-4.408664000	-0.867436000	1.473012000	Н	-4.157943000	-0.823118000	1.341534000
	С	-6.141651000	-2.024844000	1.351282000	С	-5.903072000	-1.919068000	1.677617000
	С	-6.753153000	-3.028170000	1.639201000	С	-6.485385000	-2.813500000	2.245147000
	Н	-7.293124000	-3.925904000	1.897192000	Н	-6.993821000	-3.614889000	2.754164000
	С	1.338475000	-3.011211000	1.139886000	С	1.576317000	-2.932940000	1.184041000
	С	3.676464000	-2.038690000	0.133972000	С	3.833078000	-1.793332000	0.214709000
	С	1.672027000	-2.797640000	-1.548590000	С	2.039631000	-2.624814000	-1.632785000
	С	0.298430000	3.043554000	-1.256252000	С	0.106363000	3.026566000	-1.265259000
	С	2.470892000	3.094947000	0.390901000	С	2.168153000	3.201798000	0.505782000
	С	-0.033979000	2.831083000	1.432557000	С	-0.350189000	2.723707000	1.426415000
	Cl	2.257994000	0.428654000	-1.531566000	Cl	2.285243000	0.542550000	-1.437979000
	Cl	1.846557000	0.167622000	1.767373000	Cl	1.748833000	0.186101000	1.757201000
	Ν	-0.287364000	-0.910495000	-0.268062000	Ν	-0.238665000	-0.999731000	-0.367068000
	Ν	-0.593380000	0.370414000	-0.206016000	Ν	-0.659649000	0.293731000	-0.302321000
	Ν	-5.280039000	-0.612949000	-0.396898000	Ν	-5.247493000	-0.927672000	-0.414215000
	Ο	1.043418000	-3.841801000	1.868105000	О	1.355750000	-3.767735000	1.920011000
	Ο	4.787179000	-2.258255000	0.253508000	О	4.941952000	-1.970304000	0.376834000
	Ο	1.578921000	-3.498188000	-2.447305000	0	2.090131000	-3.280286000	-2.557696000
	0	-0.117927000	3.711541000	-2.085480000	Ο	-0.304991000	3.677721000	-2.106470000
	Ο	3.371846000	3.770702000	0.556646000	О	2.994416000	3.950183000	0.730036000
	Ο	-0.651064000	3.370177000	2.229926000	О	-1.037289000	3.191452000	2.207437000
	Re	1.799521000	-1.603575000	-0.064310000	Re	1.938007000	-1.477301000	-0.061542000
	Re	0.976174000	1.895393000	0.110160000	Re	0.777642000	1.894565000	0.122967000