Supporting Information for

Substituents Make a Difference: 6,6''-modified Terpyridine Complexes with Helix Configuration and Enhanced Emission

Fan Fu,^a Die Liu,^b* Lili Zhao,^c Huili Li,^c Xinyu Bai,^c Mingzhao Chen,^c Zhilong Jiang,^c Peiyang Su,^c Wanying Zhong,^cYiming Li,^b Jun He,^a* Pingshan Wang^b*

^a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.

^b College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan-410083, China

^c Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangdong-510006, China

Table of contents

Materials and General Methods	
NMR of ligands L1 and L2	S4
Synthesis of Complexes L1 ₂ -M and L2 ₂ -M	S6
NMR and MS spectra of complexes L1 ₂ -M and L2 ₂ -M	
Crystal structure	S18
Photophysical properties	
Density Functional Theory (DFT) Calculation	
Reference	

Materials and General Methods

Absorption spectra were measured with Hitachi (model U-3010) UV-Vis spectrophotometer in a 1-cm quartz cell. Emission spectra were measured with Edinburgh (FS5) fluorescence spectrophotometer in a 1-cm quartz cell under the following conditions: EX Slit, 5.0 nm; EM Slit, 3.0 nm; PMT Voltage, 240 V for complex L2₂-Zn and EX Slit, 3.0 nm; EM Slit, 0.66 nm; PMT Voltage, 240 V for complex L2₂-M. PL quantum yields and transient PL decay are measured using Edinburgh Instruments FS30 spectrometer, Fluorescence transient spectrum measured by Edinburgh FLS980.CD spectra were measured by Chirascan,

NMR spectra were recorded on a Bruker ADVANCE 400 or 600 NMR Spectrometer. ¹H NMR chemical shifts are reported in ppm downfield from tetramethyl silane (TMS) reference using the residual protonated solvent, as an internal standard.

Mass spectra of complexes and ligands were determined on Waters Synaptic G2 Mass Spectrometer with traveling wave ion mobility (TWIM) under the following conditions: ESI capillary voltage, 3.5 kV; cone voltage, 35 V; desolation gas flow, 800 L/h. TWIM-MS was measured with IM traveling wave height, 25 V; and IM traveling wave velocity, 1000 m/s.

Single crystals were mounted on glass fiber. Intensity data were collected using a Bruker AXS-KAPPA APEX II diffractometer with graphite monochromate Mo-Ka (1 ¼ 0.710-73 Å) radiation and Cu-Ka (1 ¼ 0.710-73 Å). Data were collected using omega scans of 0.5 per frame, and full spheres of data were obtained. Cell parameters were retrieved using Bruker SMART software and refined using Bruker SAINT on all the observed reflections. Absorption corrections were applied using SADABS. Structures were solved by direct methods using the SHELXS-97 package and refined with SHELXL-97 Calculations were performed using the WinGX System Version 1.80.03. The remaining hydrogen atoms were inserted in calculated positions. Least square refinements, with anisotropic thermal motion parameters for all the nonhydrogen atoms and isotropic for the remaining atoms, were employed. CCDC 2170550 (L2₂-Co), 2170551 (L2₂-Ni), 2170552 (L2₂-Cu), 2170553 (L2₂-Zn), 2170554 (L2₂-Fe), 2169764 (L2₂-Mn), 2210926 (L1₂-Co) contain the supplementary crystallographic data of this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via w.ccdc.cam. ac.uk/data request/cif. Crystal data and details of data collections are reported in Table S3.

All chemicals were purchased from commercial suppliers and used without further purification unless otherwise specified. Benzaldehyde and 1-(6-bromopyridin-2-yl) ethan-1-one were purchased from Bide Pharmatech Company.

Density functional theory (DFT) calculations were carried out by using the Gaussian 09 package ^[1]. Ground-state geometries were fully optimized with PBE0 functional, 6-31G (d, p) basis set for C, H, O, N atoms and LANL2DZ basis set for Zn atoms. Time-dependent density functional theory (TD-DFT) was employed to calculate excited states using the same basis set. The implicit solvation models (SMD) of water and the dispersion corrections with Grimme's D3(BJ) method ^[2] were taken into consideration in all calculations. The orbital diagrams were prepared using with the Multiwfn software ^[3] and VMD package ^[4].

Scheme S1 Synthesis of complex L1₂-M and L2₂-M ($M^{2+} = Mn^{2+}$, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺), ligand L1 was synthesized according to the literature procedures.^[5]

1

Compound 1. To a solution of benzaldehyde (1.1 g, 10 mmol) in EtOH (60 mL), 1- (6-bromopyridin-2-yl) ethan-1-one (4.9 g, 24.5 mmol) and NaOH powder (2g, 50mmol) was added. After stirring at room temperature for 24 h, aqueous NH₃•H₂O (28%, 25 mL) was added, the resulting mixture was refluxed for 20 h. After cooling to room temperature, The solid was collected by suction filtration and was washed with CH₃OH to give the product as a white solid: 2.042g, 43.7%) \circ ¹H NMR (400 MHz, CDCl₃, ppm): δ = 8.69 (s, 2H), 8.59 (d, *J* = 7.6 Hz, 2H), 7.87 (d, *J* = 7.6 Hz, 2H), 7.72(t, J= 15.6Hz, 2H), 7.53 (m, 5H); ¹³C NMR (126 MHz, CDCl₃, ppm): δ = 157.3, 154.4, 150.9, 141.7, 139.2, 138.2, 129.2, 129.0, 128.2, 127.4, 120.0, 119.9.

Ligand L2. To a flask containing **1** (0.2g, 0.43 mmol), (4-methoxyphenyl) boronic acid (0.26 g, 1.7 mmol) and NaOH (0.14 g,3.5 mmol), A mixed solvent (40mL) of THF/H₂O (10:1, v/v) was added. Then Pd (PPh₃)₄ (0.21 g, 0.18 mmol) was added, the system was pumped and backfilled with nitrogen. The mixture was refluxed for 2 days under N₂. After cooling to 25 °C, the mixture was extracted with CHCl₃ and the combined organic extract was evaporated in vacuo to dryness giving a reside that was washed with CH₃OH, Then subjected to column chromatography (Al₂O₃, CH₂Cl₂/MeOH = 100:1), Then the major fraction was recrystallized from a mixture of CH₂Cl₂/ MeOH to give **L2** (64%), As a white solid: 0.14 g (0.81 mmol); ¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.82 (s, 2H), 8.53 (d, *J* = 8.4 Hz, 2H), 8.09 (d, *J* = 8.8 Hz, 4H), 7.85(m, 4H), 7.69 (d, *J* = 8.8Hz, 2H), 7.51 (t, *J* = 14.8Hz, 2H), 7.43 (t, *J* = 14.8Hz, H), .6.99 (d, *J* = 8.8Hz, 4H) .3.83 (s, 6H); ¹³C NMR (126 MHz, CDCl₃, ppm): δ = 160.5, 156.15 156.1, 155.8, 150.3, 139.2, 137.5, 132.1, 129.0, 128.8, 128.3, 127.5, 119.6, 119.2, 119.0, 114.1, 55.4.

NMR spectra of ligands L1 and L2

Fig. S2 ¹³C NMR spectra of ligand L1 in CDCl₃

Synthesis of Complexes L1₂-M and L2₂-M

Complex L1₂-M^[5] ($\mathbf{M} = \mathbf{Zn}^{[5]}$. Cu^[6]. Ni^[5]. Fe^[5]. Mn^[5]). The Ligand-M was synthesized according to the literature procedures.

Complex L1₂-Co. To mixed solvent of CHCl₃ (15 mL) and MeOH (15 mL) of ligand **2** (56.24 mg, 107.80 μ mol) were added, then a solution of Co(NO₃)₂·6H₂O (26.45 mg, 90.89 μ mol) in CH₃OH (5.37 mL) was added. After stirring the mixture at 65 °C for 12 h, excess NH₄PF₆ was added to precipitate the complex, which was then filtered, washed with H₂O and then dried in vacuo. The desired complex was obtained (76%) as the black solid: 34.70 mg, 24.93 μ mol. ESI-MS (967.11 calcd. For C₄₂H₃₀CoF₁₂N₆P₂): m\z 823.15[M-PF₆] + (calcd m/z: 823.1584).

Complex L2₂-Zn. To mixed solvent of CHCl₃ (20 mL) and MeOH (20 mL) of ligand **2** (27.97 mg, 53.60 µmol) were added, then a solution of Zn(NO₃)₂·6H₂O (7.98 mg, 26.81 µmol) in CH₃OH (1.28 mL) was added. After stirring the mixture at 65 °C for 12 h, excess NH₄PF₆ was added to precipitate the complex, which was then filtered, washed with H₂O, and then dried *in vacuo*. The desired complex was obtained (80%) as the white solid: 0.03 mg, 21.45 µmol). ¹H NMR (400 MHz, CD₃CN, ppm) δ = 8.06 (m, 16H), 7.77 (d, *J* = 8.4 Hz, 4H), 7.52 (d, *J* = 8.4 Hz, 4H), 7.08(d, J = 8.8Hz, 8H), 6.31 (d, J = 8.4Hz, 8H), 3.41(s, 12H); ¹³C NMR (126 MHz, CD₃CN, ppm): δ = 161.5, 160.1, 155.6, 150.9, 150.8, 141.3, 136.1, 131.9, 130.1, 130.1, 130.0, 128.7, 127.60, 122.4, 122.2, 113.9, 55.4. ESI-MS (1398.55 calcd. For C₇₀H₅₄ZnF₁₂N₆O₄P₂): m/z 1257.3140[M-PF₆] + (calcd m/z: 1257.3140).

Complex L2₂-Cu. To mixed solvent of CHCl₃ (18 mL) and MeOH 18 mL of ligand **2** (34.23 mg, 65.60 µmol) were added, then a solution of Cu(CH₃COO)₂·2H₂O (7.63 mg, 32.80 µmol) in CH₃OH (2.60 mL) was added. After stirring the mixture at 65 °C for 12 h, excess NH₄PF₆ was added to precipitate the complex, which was then filtered, washed with H₂O, and then dried in vacuo. The desired complex was obtained (85%) as the pale-yellow solid: 38.95 mg, 27.88 µmol. ¹H NMR (600 MHz, CD₃CN, ppm) δ = 8.48 (s, 4H),8.15 (s),6.88 (s),6.33 (s), 4.91(s,12H). ESI-MS (1396.71 calcd. For C₇₀H₅₄CuF₁₂N₆O₄P₂): m/z 553.6821[M-2PF₆] ⁺ (calcd m/z:553.6829).

Complex L2₂-Ni. To mixed solvent of CHCl₃ (18 mL) and MeOH (18 mL) of ligand **2** (34.23 mg, 65.60 μ mol) were added, then a solution of NiCl₂·6H₂O (7.63 mg, 32.80 μ mol) in CH₃OH (2.60 mL) was added. After stirring the mixture at 65 °C for 12 h, excess NH₄PF₆ was added to precipitate the complex, which was then filtered, washed with H₂O and then dried *in vacuo*. The desired complex was obtained (85%) as the pale-yellow solid: 38.95 mg, 27.88 μ mol. ¹H NMR (600 MHz, CD₃CN, ppm) δ = 58.86 (s, 4H), 54.90 (s,4H), 49.64 (s, 4H), 12.01 (s), 10.19 (s,2H). 7.61 (m), 7.24 (s), 4.03(s, 12H). ESI-MS (1391.86 calcd. For C₇₀H₅₄NiF₁₂N₆O₄P₂): m\z 551.1874 [M-2PF₆] + (calcd m/z:551.1858).

Complex L2₂-Co. To mixed solvent of CHCl₃ (20 mL) and MeOH (18 mL) of ligand **2** (56.24 mg, 107.80 µmol) were added, then a solution of Co(NO₃)₂·6H₂O (15.69 mg, 32.80 µmol) in CH₃OH (1.94 mL) was added. After stirring the mixture at 65 °C for 12 h, excess NH₄PF₆ was added to precipitate the complex, which was then filtered, washed with H₂O and then dried in vacuo. The desired complex was obtained (76%) as the pink solid: 34.70 mg, 24.93 µmol. ¹H NMR (600 MHz, CD₃CN, ppm) δ = 107.55 (s, 4H), 69.38 (s, 4H), 37.94 (s, 4H), 27.54 (s, 4H), 15.84 (d), 14.17 (s), 12.59 (s), ESI-MS (1392.10 calcd. For C₇₀H₅₄CoF₁₂N₆O₄P₂): m/z 1247.4475[M-PF₆] ⁺ (calcd m/z:1247.3258).

Complex L2₂-Mn. To mixed solvent of CHCl₃ (21mL) and MeOH (17 ml) of ligand **2** (35.84 mg, 68.70 μ mol) were added, then a solution of Mn(NTF)₂·6H₂O (21.14 mg, 34.30 μ mol) in CH₃OH 1.79 mL) was added. After stirring the mixture at 65 °C for 12 h, excess NH₄PF₆ was added to precipitate the complex, which was then filtered, washed with H₂O, and then dried in vacuo. The desired complex was obtained (59%) as the green solid: 28.09 mg, 20.24 μ mol. ¹H NMR (600 MHz, CD₃CN, ppm) δ = 8.84 (s, 4H), 8.44 (s, 4H), 8.17 (m), 8.10 (s), 7.76 (s),

 $6.86 \text{ (s)}, 3.83 \text{ (s, 12H)}, \text{ESI-MS (1388.11 calcd. For } C_{70}H_{54}MnF_{12}N_6O_4P_2): \text{ m} \times 549.6860[\text{M-2PF}_6]^+ \text{ (calcd } \text{m/z 549.6871)}.$

Complex L2₂-Fe. The L2₂-Fe^[7] was synthesized according to the literature procedures.

NMR and MS spectra of complexes L1₂-M and L2₂-M

Fig. S5 ¹HNMR spectra of complex L2₂-Zn in CD₃CN.

Fig. S9 ¹HNMR spectra of complex L2₂-C0 in CD₃CN (* residual acetonitrile solvent, and silicone grease).

Fig. S10 ¹HNMR spectra of complex L2₂-Cu in CD₃CN(* residual acetonitrile solvent, and silicone grease).

Fig. S11 ¹HNMR spectra of complex L2₂-Mn in CD₃CN(* residual acetonitrile solvent, and silicone grease).

Fig. S12 ¹HNMR spectra of complex L2₂-Ni in CD₃CN(* residual acetonitrile solvent, and silicone grease).

Fig. S15 The ESI-MS spectra of complex $L1_2$ -Ni.

Fig. S18 The ESI-MS spectra of complex $L2_2$ -Mn.

Fig. S20 The ESI-MS spectra of complex L2₂-Cu.

Fig. S21 The ESI-MS spectra of complex L1₂-Zn.

Fig. S22 The ESI-MS spectra of complex $L2_2$ -Zn.

Fig. S23 The ESI-MS spectra of complex $L1_2$ -Fe.

S17

Crystal structure

Crystals of $[Co(L1)_2]$ $[PF_6]_2$ ·CH₃CN and $[M(L2)_2]$ $[PF_6]_2$ ·CH₃CN·H₂O (Fe²⁺, Co²⁺, Zn²⁺) grew within seven days by layering H₂O over a CH₃CN solution of complexes. Crystals of $M(L2)_2$ (Mn²⁺, Ni²⁺, Cu²⁺) grew within seven days by slow evaporation CHCl₃/CH₃OH solution of $[Mn(L2)_2]$ [(CF₃SO₂)₂N]₂, $[Ni(L2)_2]$ [CF₃SO₃]₂ and $[Cu(L2)_2]$ [NO₃]₂, respectively.

Fig. S25 Molecular structure of L12-Co and L22-Co at room temperature.

Fig. S26 P and M helical conformation extracted from the crystal structure of L2₂-Co.

Fig. S27 The views of the π - π stacking interactions of the molecule of complex L2₂-Co: (a) viewed on 110 from crystal plane, (b) 010 crystal plane, (c) 001 crystal. and (d) π - π stacking interactions of the molecule.

Fig. S28 The views of the intramolecular and intermolecular π - π stacking interactions of the molecule L2₂-Co.

Table S1 π - π stacking interactions in L22-Co. P1: C043 \rightarrow C04W \rightarrow C042 \rightarrow C049 \rightarrow C02K \rightarrow C01U, P2 :C017 \rightarrow C00P \rightarrow C046 \rightarrow C04M \rightarrow C05B \rightarrow C02Q, P3: C03U \rightarrow C00U \rightarrow C010 \rightarrow C036 \rightarrow C03J \rightarrow C056, P4 : C6 \rightarrow C5 \rightarrow C05K \rightarrow C0 \rightarrow C3 \rightarrow C2, P5 : C03Q \rightarrow C03P \rightarrow C03F \rightarrow C055 \rightarrow C05F \rightarrow C03W, P6:C03D \rightarrow C04G \rightarrow C024 \rightarrow C02N \rightarrow C02U \rightarrow C04Y, P7: N01B \rightarrow C058 \rightarrow C04V \rightarrow C03I \rightarrow C02H \rightarrow C01Q.P8 \rightarrow N01E \rightarrow C016 \rightarrow C03S \rightarrow C02M \rightarrow C02O \rightarrow C00N , P9: N01L \rightarrow C04C \rightarrow C04X \rightarrow C04A \rightarrow C02P . P10: N01N \rightarrow C025 \rightarrow C01J \rightarrow C03V \rightarrow C048 \rightarrow C00C. P11: N038 \rightarrow C02R \rightarrow C03B \rightarrow C028

\rightarrow C01C,	P12: N03C \rightarrow	\cdot C03G \rightarrow	$C03M \rightarrow$	$C03L \rightarrow$	$C04I \rightarrow 0$	C026.

Entry	π - π stack	C-C (Å)	α (°)	β (°)	C-plane (Å)	Slippage (Å)	Symmetry operation
1	P1-P11	3.504	9.24	9.86	3.264	1.248	(+X, +Y, +Z)
2	P2-P8	3.398	10.988	36.9	3.373	0.411	(+X, +Y, +Z)
3	P3-P9	3.652	1.504	3.2	3.533	0.844	(+X,1/2-Y, -1/2+Z)
4	P3-P11	3.408	7.401	40.6	3.374	0.487	(+X, +Y, +Z)
5	P4-P8	3.72	12.432	28.4	3.32	1.683	(+X, +Y, +Z)
6	P9-P10	3.558	19.169	59.2	3.518	0.82	(+X, +Y, +Z)

(A)	\frown	(B)	\sim \sim		Angle	L1 ₂ -Mn	L2 ₂ -Mn
			NG A	Pond	N1-Zn-N6	92.83	101.92
	NG		NIT N5	Bond Angle (°)	N4-Zn-N3	92.333	101.61
	N1 N5		IN Ma	Angle ()	N5-Zn-N2	170.89	152.16
	Mn		Null Null		P2-P1	5.145	15.692
	N2 N3 N4		N2 N3 N4		P2-P3	7.853	14.902
				Dihedral	P5-P4	11.04	21.563
			\bigcirc \checkmark	Aligie ()	P5-P6	11.24	18.664
(\mathbf{C})		(D) P6		Average	8.819	17.503	
(\mathbf{O})	\frown			Mn-N1	2.243	2.409	
	PA			Mn-N2	2.184	2.148	
	P5		P5	Bond Length	Mn-N3	2.254	2.322
P1	P1	\square	P2		Mn-N4	2.221	2.332
	P2 D2 P4		P3	(Å)	Mn-N5	2.186	2.133
		P4		Mn-N6	2.245	2.356	
					Average	2.222	2.283

Fig. S29 Molecular structure of L12-Mn and L22-Mn at room temperature.

Fig. S30 P and M helical conformation extracted from the crystal structure of L22-Mn.

Fig. S31 The views of the π - π stacking interactions of the molecule of complex L2₂-Mn: (a) viewed on110 from crystal plane, (b) 010 crystal plane, (c) 001 crystal. and (d) π - π stacking interactions of the molecule.

Fig. S32 The views of the intramolecular and intermolecular π - π stacking interactions of the molecule L2₂-Mn.

Table S2 π - π stacking interactions in L22-Mn. P1: C17 \rightarrow C22 \rightarrow C21 \rightarrow C20 \rightarrow C19 \rightarrow C18 , P2: C29 \rightarrow C34 \rightarrow C33 \rightarrow C32 \rightarrow C31 \rightarrow C30 , P3: C29A \rightarrow C34A \rightarrow C33A \rightarrow C32A \rightarrow C31A \rightarrow C30A , P4: C17A \rightarrow C22A \rightarrow C21A \rightarrow C20A \rightarrow C19A \rightarrow C18A , P5: C4 \rightarrow C5 \rightarrow C6 \rightarrow C1 \rightarrow C2 \rightarrow C3 , P6: C4A \rightarrow C5A \rightarrow C6A \rightarrow C1A \rightarrow C2A \rightarrow C3A , P7: N1 \rightarrow C16 \rightarrow C15 \rightarrow C14 \rightarrow C13 \rightarrow C12 , P8: N2 \rightarrow C10 \rightarrow C11 \rightarrow C7 \rightarrow C8 \rightarrow C9 , P9: N3 \rightarrow C28 \rightarrow C27 \rightarrow C26 \rightarrow C25 \rightarrow C24 , P10: N4 \rightarrow C28A \rightarrow C27A \rightarrow C26A \rightarrow C24A,p11: N5 \rightarrow C10A \rightarrow C11A \rightarrow C7A \rightarrow C8A \rightarrow C9A , P12: N6 \rightarrow C16A \rightarrow C15A \rightarrow C14A \rightarrow C13A \rightarrow C12A.

Entry	π-π stack	c-c(Å)	α (°)	β (°)	c-plane (Å)	Slippage (Å)	Symmetry operation
1	P1-P11	3.45	7.032	25.6	3.32	0.965	(+X, +Y, +Z)
2	P2-P11	3.496	8.585	24.7	3.298	1.162	(+X, +Y, +Z)
3	P3-P8	3.388	6.586	22.5	3.236	0.877	(+X, +Y, +Z)
4	P4-P8	3.38	7.231	25.1	3.296	0.747	(+X, +Y, +Z)
5	P7-P12	3.984	30.527	74	3.664	1.885	(+X, +Y, +Z)

(A)	0	(B)		Angle	L1 ₂ -Zn	L2 ₂ -Zn
. ,			Dand	N1-Zn-N6	85.356	80.63
	N6 N5		Angle (°)	N4-Zn-N3	84.823	82.71
	N1 Zn	IND INS	/ ingle ()	N5-Zn-N2	170.16	175.19
	N4	N1 Zn		P2-P1	7.397	24.915
	N2 N3	N2 N3	D ¹¹ I I	P2-P3	7.9	13.651
		\sim \sim	Dihedral	P5-P4	9.539	10.376
	1		Aligie ()	P5-P6	9.763	30.583
(C)		(D)		Average	8.650	19.881
(\mathbf{C})				Zn-N1	2.139	2.5059
	P6			Zn-N2	2.0676	2.0272
	P1 P5	P1 P5	Bond Length (Â)	ZN-N3	2.223	2.1441
P2	D2 10	P2 P3		Zn-N4	2.193	2.4996
	P3 P4			Zn-N5	2.0566	2.013
		P4		Zn-N6	2.184	2.1867
				Average	2.144	2.229

Fig. S33 Molecular structure of $L1_2$ -Zn and $L2_2$ -Zn at room temperature.

Fig. S34 P and M helical conformation extracted from the crystal structure of L22-Zn.

Fig. S35 The views of the π - π stacking interactions of the molecule of complex L2₂-Zn: (a) viewed on 110 from crystal plane, (b) 010 crystal plane, (c) 001 crystal. and (d) π - π stacking interactions of the molecule.

Fig. S36 The views of the intramolecular and intermolecular π - π stacking interactions of the molecule L2₂-Zn.

Table S3 π - π stacking interactions in L2₂-Zn. P1: C17 \rightarrow C22 \rightarrow C21 \rightarrow C20 \rightarrow C19 \rightarrow C18, P2: C29 \rightarrow C34 \rightarrow C33 \rightarrow C32 \rightarrow C31 \rightarrow C30, P3: C17A \rightarrow C22A \rightarrow C21A \rightarrow C20A \rightarrow C19A \rightarrow C18A, P4: C29A \rightarrow C34A \rightarrow C33A \rightarrow C32A \rightarrow C31A \rightarrow C30A, P5: C4 \rightarrow C5 \rightarrow C6 \rightarrow C1 \rightarrow C2 \rightarrow C3, P6: C4A \rightarrow C5A \rightarrow C6A \rightarrow C1A \rightarrow C2A \rightarrow C3A, P7: N1 \rightarrow C16 \rightarrow C15 \rightarrow C14 \rightarrow C13 \rightarrow C12, P8: N2 \rightarrow C10 \rightarrow C11 \rightarrow C7 \rightarrow C8 \rightarrow C9, P9: N2 \rightarrow C10 \rightarrow C11 \rightarrow C7 \rightarrow C8 \rightarrow C9, P10: N4 \rightarrow C28A \rightarrow C27A \rightarrow C26A \rightarrow C25A \rightarrow C24A, p11: N5 \rightarrow C10A \rightarrow C11A \rightarrow C7A \rightarrow C8A \rightarrow C9A, P12: N6 \rightarrow C16A \rightarrow C15A \rightarrow C14A \rightarrow C13A \rightarrow C12A.

Entry π -r	t stack c-	$c(A)$ α (°)) β(°)	c-plane (A	A) Slippage (A	 Symmetry operation
1 P	1-P11 3.	.482 3.31	8 9.9	3.2909	1.17	(+X, +Y, +Z)
2 P2	2-P10 3.	.782 11.06	51 21.38	3.341	1.772	(+X, +Y, +Z)
3 P	3-P8 3.	.544 4.60	4 0.59	3.2999	1.554	(+X, +Y, +Z)
4 P	94-P8 3.	.921 13.1	8 22.43	3.249	2.342	(+X, +Y, +Z)
5 P	94-P9 3.	.896 1.46	9 0.34	3.372	1.951	(+X, +Y, +Z)
6 P'	7-P10 3.	.612 11.64	49 46.6	3.5064	0.972	(+X, +Y, +Z)

Fig. S37 Molecular structure of L12-Ni and L22-Ni at room temperature.

Fig. S38 P and M helical conformation extracted from the crystal structure of L22-Ni.

Fig. S39 The views of the π - π stacking interactions of the molecule of complex L2₂-Ni: (a) viewed on 110 from crystal plane, (b) 010 crystal plane, (c) 001 crystal. and (d) π - π stacking interactions of the molecule.

Fig. S40 The views of the intramolecular and intermolecular π - π stacking interactions of the molecule L2₂-Ni.

	I able S4 π - π	stacking inte	ractions in L_2 -N	$\mathbf{I}. \mathbf{PI}: \mathbf{CI} / \to \mathbf{C22} \to \mathbf{C21} -$	\rightarrow C20 \rightarrow C19 \rightarrow	C18, P2: C29 –	\rightarrow C34 \rightarrow			
	$\text{C33} \rightarrow \text{C32} \rightarrow \text{C31} \rightarrow \text{C30} \text{, P3: C29A} \rightarrow \text{C34A} \rightarrow \text{C33A} \rightarrow \text{C32A} \rightarrow \text{C31A} \rightarrow \text{C30A} \text{, P4: C17A} \rightarrow \text{C22A} \rightarrow \text{C31A} \rightarrow \text{C30A} \text{, P4: C17A} \rightarrow \text{C22A} \rightarrow \text{C31A} \rightarrow \text{C30A} \text{, P4: C17A} \rightarrow \text{C22A} \rightarrow \text{C31A} \rightarrow \text{C30A} \text{, P4: C17A} \rightarrow \text{C22A} \rightarrow \text{C31A} \rightarrow \text{C30A} \text{, P4: C17A} \rightarrow \text{C22A} \rightarrow \text{C31A} \rightarrow \text{C30A} \text{, P4: C17A} \rightarrow \text{C22A} \rightarrow \text{C31A} \rightarrow \text{C30A} \text{, P4: C17A} \rightarrow \text{C22A} \rightarrow \text{C31A} \rightarrow \text{C30A} \text{, P4: C17A} \rightarrow \text{C30A} $									
	$\text{C21A} \rightarrow \text{C20A} \rightarrow \text{C19A} \rightarrow \text{C18A}, \text{P5: C4} \rightarrow \text{C5} \rightarrow \text{C6} \rightarrow \text{C1} \rightarrow \text{C2} \rightarrow \text{C3}, \text{P6: C4A} \rightarrow \text{C5A} \rightarrow \text{C6A} \rightarrow \text{C6A}$									
	$C1A \rightarrow C2A$	\rightarrow C3A, P7	$V: N1 \rightarrow C16 \rightarrow$	$C15 \rightarrow C14 \rightarrow C13 \rightarrow C$	$212, P8: N2 \rightarrow C$	$10 \rightarrow C11 \rightarrow C7$	$\rightarrow C8$			
	\rightarrow C9 , P9: N	$3 \rightarrow C28 \rightarrow 0$	$C27 \rightarrow C26 \rightarrow C$	$25 \rightarrow C24$, P10: N5 $\rightarrow C10$	$A \rightarrow C11A \rightarrow C$	$C7A \rightarrow C8A \rightarrow C$	9A, P11:			
	$N4 \rightarrow C28A$	\rightarrow C27A \rightarrow C	$C26A \rightarrow C25A -$	\rightarrow C24A , P12: N6 \rightarrow C16A	\rightarrow C15A \rightarrow C14	$A \rightarrow C13A \rightarrow C$	12A.			
Entry	π-π stack	c-c(Å)	α (°)	β (°)	c-plane (Å)	Slippage (Å)	Symmetry operation			
1	P1-P10	3.381	9.398	0.857	38.3	0.857	(+X, +Y, +Z)			
2	P2-P10	3.391	9.935	48	3.297	0.791	(+X, +Y, +Z)			
3	P3-P8	3.35	10.095	60.9	3.292	0.529	(+X, +Y, +Z)			
4	P4-P8	3.366	8.206	14	3.355	0.213	(+X, +Y, +Z)			
5	P4-P9	3.975	11.061	11.3	3.297	1.638	(+X,3/2-Y, -1/2+Z)			
6	P7-P11	3.951	37.254	78.9	3.578	1.677	(+X, +Y, +Z)			

G 4

Fig. S41 Molecular structure of L12-Cu and L22-Cu at room temperature.

Fig. S42 P and M helical conformation extracted from the crystal structure of L2₂-Cu.

Fig. S43The views of the intramolecular and intermolecular π - π stacking interactions of the molecule L2₂-Cu.

Table S5 π - π stacking interactions in L2₂-Cu. P1: C20 \rightarrow C21 \rightarrow C22 \rightarrow C17 \rightarrow C18 \rightarrow C19, P2: C29 \rightarrow C34 \rightarrow C33 \rightarrow C32 \rightarrow C31 \rightarrow C30, P3: C4 \rightarrow C36 \rightarrow C01E \rightarrow C37 \rightarrow C6 \rightarrow C5, P4: N1 \rightarrow C16 \rightarrow C15 \rightarrow C14 \rightarrow C13

Entry	π - π stack	c-c(Å)	α (°)	β (°)	c-plane (Å)	Slippage (Å)	Symmetry operation
1	P1-P4	3.657	7.835	9.18	3.2712	1.225	(+X,3/2-Y,1-Z)
2	P1-P5	3.461	12.858	36.5	3.2158	1.28	(3/2-X,3/2-Y,+Z)
3	P2-P5	3.444	12.593	49.2	3.4008	0.981	(3/2-X,3/2-Y,+Z)
4	P4-P6	3.84	33.953	70.7	3.5191	1.537	(3/2-X,3/2-Y,+Z)

Fig. S44 Molecular structure of L12-Fe and L22-Fe at room temperature.

Fig. S45 P and M helical conformation extracted from the crystal structure of L22-Fe.

Fig. S46 The views of the π - π stacking interactions of the molecule of complex L2₂-Fe: (a) viewed on 110 from crystal plane, (b) 010 crystal plane, (c) 001 crystal. and (d) π - π stacking interactions of the molecule.

Fig. S47 The views of the intramolecular and intermolecular π - π stacking interactions of the molecule L2₂-Fe.

$$\begin{split} \textbf{Table S6} & \pi \text{-}\pi \text{ stacking interactions in } \textbf{L2}_{2}\textbf{-}\textbf{Fe}. \ Pl: \ Cl7 \rightarrow C22 \rightarrow C21 \rightarrow C20 \rightarrow Cl9 \rightarrow Cl8 \ , \text{P2: } C29 \rightarrow C34 \\ & \rightarrow C33 \rightarrow C32 \rightarrow C31 \rightarrow C30 \ , \text{P3: } Cl7A \rightarrow C22A \rightarrow C21A \rightarrow C20A \rightarrow C19A \rightarrow C18A \ , \text{P4: } C29A \rightarrow C34A \rightarrow C33A \rightarrow C32A \rightarrow C31A \rightarrow C30A \ , \text{P5: } C4 \rightarrow C5 \rightarrow C6 \rightarrow C1 \rightarrow C2 \rightarrow C3 \ , \text{P6: } C4A \rightarrow C5A \rightarrow C6A \rightarrow C1A \rightarrow C2A \rightarrow C3A \ , \text{P7: } N1 \rightarrow C16 \rightarrow C15 \rightarrow C14 \rightarrow C13 \rightarrow C12 \ , \text{P8: } N2 \rightarrow C10 \rightarrow C11 \rightarrow C7 \\ & \rightarrow C8 \rightarrow C9 \ , \text{P9: } N2 \rightarrow C10 \rightarrow C11 \rightarrow C7 \rightarrow C8 \rightarrow C9A \ , \text{P10: } N4 \rightarrow C28A \rightarrow C27A \rightarrow C26A \rightarrow C25A \rightarrow C24A, \text{p11: } N5 \rightarrow C10A \rightarrow C11A \rightarrow C7A \rightarrow C8A \rightarrow C9A \ , \text{P12: } N6 \rightarrow C16A \rightarrow C15A \rightarrow C14A \rightarrow C13A \rightarrow C12A. \end{split}$$

Linuy	n-n stack	0-0(11)	α()	P()		Shippage (11)	Symmetry operation
1	P1-P11	3.455	4.553	13.4	3.248	1.179	(+X, +Y, +Z)
2	P2-P10	3.986	2.562	1.53	3.277	2.404	(+X, +Y, +Z)
3	P2-P11	3.782	10.407	19.57	3.2019	1.833	(+X, +Y, +Z)
4	P3-P8	3.947	13.292	22.3	3.221	2.391	(+X, +Y, +Z)
5	P3-P9	3.833	1.562	2.08	3.8326	1.868	(+X, +Y, +Z)
6	P4-P8	3.515	5.541	3.97	3.2831	1.554	(+X, +Y, +Z)
7	P7-P12	3.515	5.541	77.5	3.5141	0.897	(+X, +Y, +Z)

S28

Complex	L1 ₂ -Ni	L2 ₂ -Ni	L1 ₂ -Fe	L2 ₂ -Fe	L1 ₂ -Cu	L22-Cu
N (5)- M (1)-N (2)	178.75	177.8	177.54	156.32	175.08	178.67
N (5)-M (1)-N (1)	103.04	103.7	100.8	89.81	89.81	77.3
N (2)-M (1)-N (1)	78.13	77.4	81.31	72.85	78.9	78.093
N (5)-M (1)-N (4)	78.36	77.3	81.45	75.55	76.8	78.093
N (2)-M (1)-N (4)	101.2	104.8	97.33	123.71	102.41	102.7
N (1)-M (1)-N (4)	93.4	80.5	89.74	104.47	90.74	71.317
N (5)-M (1)-N (6)	78.17	77.2	81.24	73	76.58	78.357
N (2)-M (1)-N (6)	92.85	100.7	100.05	88.78	104.69	100.799
N (1)-M (1)-N (6)	92.85	103.9	91.29	83.51	98.78	100.924
N (6)-M (1)-N (4)	156.5	154.5	162.54	147.51	152.52	156.312
N (5)-M (1)-N (3)	100.38	101	96.62	122.4	106.5	100.799
N (2)-M (1)-N (3)	78.45	78	81.27	75.89	78.37	78.357
N (1)-M (1)-N (3)	156.57	155.3	162.58	147.77	157.26	156.312
N (4)-M (1)-N (3)	91.79	104.1	92.56	86.46	93.54	100.924
N (6)-M (1)-N (3)	91.41	82.5	91.66	103.58	87.55	77.055
Complex	L1 ₂ -Zn	L2 ₂ -Zn	L1 ₂ -Co	L2 ₂ -Co	L1 ₂ -Mn	L2 ₂ -Mn
N (5)- M (1)-N (2)	170.893	152.16	177.292	169.17	170.159	175.19
N (5)-M (1)-N (1)	67.672	86.97	98.103	112.165	113.307	102.8
N (2)-M (1)-N (1)	76.866	72.33	79.879	76.299	72.695	72.46
N (5)-M (1)-N (4)	75.865	72.69	79.838	75.706	72.595	73.68
N (2)-M (1)-N (4)	76.036	86.33	101.985	95.563	114.999	108.25
N (1)-M (1)-N (4)	87.584	83.51	88.758	72.589	98.843	106.96
N (5)-M (1)-N (6)	76.133	78.26	80.812	75.814	71.976	72.96
N (2)-M (1)-N (6)	104.603	123.42	97.43	112.855	100.261	108.25
N (1)-M (1)-N (6)	92.83	101.92	92.603	97.717	85.356	80.63
N (6)-M (1)-N (4)	151.407	150.14	160.529	151.488	144.569	146.65
N (5)-M (1)-N (3)	95.773	122.59	102.089	97.505	101.37	110.95
N (2)-M (1)-N (3)	75.121	78.78	79.983	74.449	72.388	73.8
N (1)-M (1)-N (3)	151.913	150.31	159.034	150.29	145.077	146.24
N (4)-M (1)- N (3)	92.333	101.61	90.071	99.365	84.823	82.71

Table S7 The bond angles of complex $L1_2\mbox{-}M$ and complex $L2_2\mbox{-}M.$

Table S8 The bond lengths of complexes $L1_2$ -M and $L2_2$ -M.

89.92

75.568

92.09

109.29

N (6)-M (1)-N (3)

83.896

88.15

Complex	L1 ₂ -Ni	L2 ₂ -Ni	L1 ₂ -Fe	L2 ₂ -Fe	L1 ₂ -Cu	L2 ₂ -Cu
M1-N1	2.082	2.282	1.971	2.4057	2.111	2.323
M1-N2	1.952	1.967	1.876	2.0866	1.957	1.915
M1-N3	2.073	2.242	1.983	2.1934	2.131	2.3168
M1-N4	2.083	2.218	1.974	2.2316	2.252	2.323
M1-N5	1.954	1.972	1.875	2.0752	2.01	1.915
M1-N6	2.076	2.253	1.975	2.4072	2.226	2.317
Complex	L1 ₂ -Zn	L2 ₂ -Zn	L1 ₂ -Co	L2 ₂ -Co	L1 ₂ -Mn	L2 ₂ -Mn
M1-N1	2.139	2.5059	2.088	2.21	2.243	2.409
M1-N2	2.0676	2.0272	1.888	2.02	2.184	2.148
M1-N3	2.223	2.1441	2.079	2.351	2.254	2.322
M1-N4						
	2.193	2.4996	2.058	2.347	2.221	2.332
M1-N5	2.193 2.0566	2.4996 2.013	2.058 1.88	2.347 2.029	2.221 2.186	2.332 2.133

	$CoL2_2(PF_6)_2(H_2O)_4$	$CuL2_2(NO_3)_2(H_2O)_4$	FeL2 ₂ (PF ₆) ₂ (CH ₃ CN) _{1.5}	$MnL2_2(NTF)_2$
Formulate	$C_{70}H_{54}CoF_{12}N_6O_4P_2$	C70H54CuN8O10	$C_{73}H_{58.50}F_{12}FeN_{7.5}O_4P_2$	$C_{74}H_{54}F_{12}MnN_8O_{12}S_4$
М	1392.06	1230.75 1450.56		1658.43
Crystal system	monoclinic	tetragonal	monoclinic	monoclinic
Space group	$P2_1/c$	P42/nbc	P -1	P121/c1
a/A	18.2116(5)	19.5981(3)	14.7837(2)	16.4958(5)
b/A	24,5320(6)	19.5981(3)	15.5793(3)	20.9832(7)
c/A	15.6483(4)	33.1820(9)	15.76050(10)	41.0349(14)
$\alpha/^{\circ}$	90	90	110.3520(10)	90
ß/°	105.614(3)	90	102.5600(10)	93,595(3)
ν/°	90	90	96.5360(10)	90
V/A° ³	6733 1(3)	12744 7(5)	3249 93(8)	14175.7(8)
$D/q \text{ cm}^{-3}$	1 373	1 283	1 482	1 554
D _c /g cm	1.575	8	2	8
Colour	4	o blockich block	Light orango	o light colorloss
Unhit			nght ofange	hlash
Habit		prism	prism	DIOCK
Dimensions/mm	0.04x0.02x0.01	0.2x0.13x0.11	0.2x0.1x0.06	0.14x0.12x0.11
m(Mo/Cu Ka)/mm ⁻¹	0.77	0.82	0.8	0.72
T max,min	1.000, 0.60401	0.0835, 0.0112	1.000, 0.67645	0.957x 0.945
N _{ind} (Rint)	-0.0999	-0.0282	46115,(0.0496)	33790 (0.0556)
$R1^a \omega R2^a$	0.1954,0.2020	0.1856, 0.1907	0.1312, 0.1344	0.1451, 0.1820
GoF	GoF 1.16		1.005	1.047
$\triangle \rho_{min,max}/e^{-} A^{\circ - 3}$	(-)0.678, 0.096	(-)0.835, 0.094	(-)0.682, 0.900	(-)0.595, 0.533
CCDC	2170550	2170552	2170554	2169764
	NiL2 ₂ (CF ₃ SO ₃) ₂ (H ₂ O).	$ZnL2_2(PF_6)2$	$(H2O)_4 CoL1_2(PF_6) H$	I_2O
Formulate	$C_{72}H_{54}F_6N_6Ni_{10}S_2$	$C_{74}H_{60}F_{12}N_8O$	D_4P_2Zn $C_{42}H_{31}CoF_{12}N$	I_6P_2
М	1400.04	1480.6	1 993.11	
Crystal system	monoclinic	triclini	c triclinic	
Space group	P121/C 1 20.0030(14)	P -1 14 825360	P-1 (16) 13.42	
b/A	19 9002(11)	15 58807	(16) 17 5883	
c/A	17.2847(11)	15.76441	(18) 17.7353	
$\alpha / ^{\circ}$	90	110.6557	(10) 100.794(1)	i.
β/°	105.098(7)	96.7606	(9) 93.906(1)	
γ/°	90	96.7606	(9) 94.420(1)	
V/A° ³	6642.9(8)	3251.48	(7) 4085.27(7)	
$D_c/g \text{ cm}^{-3}$	1.4	1.512	1.615	
Z	4	2	4	
Color	light green	light color	clear dark ora	nge
Habit Dimonsions/mm	needle $0.13 \times 0.12 \times 0.1$		$plate = 0.4 \times 0.02 \times 0.02$	90
m(Mo/Cu Ka)/mm ⁻¹	0.15x0.12x0.1	0.14x0.12	4 926	38
T max min	1.00000, 0.93349	0.840. 0.3	786 1.0.17350	
N _{ind} (Rint)	0.1337	0.0335	0.076	
$R1^a \omega R2^a$	0.1899, 0.2610	0.0453, 0.0	0422 0.1383,0.143	37
GoF	1.022	1.036	1.0066	
$\triangle \rho_{min,max}/e^- A^{\circ -3}$	(-)0.592, 0.999	0.1188, 0.1	0.723, -0.6	32
CCDC	2170551	217055	3 2210926	

Table S9 Selected geometric parameters of Complex $L1_2\mbox{-}M$ and Complex $L2_2\mbox{-}M$

Complex	$d_{ m mean}$	ζ	Σ	Θ
L2 ₂ -Ni	2.1557	0.744414	145.3703	409.5689
L2 ₂ -Cu	2.1852	1.079147	147.5754	424.6856
L2 ₂ -Co	2.1994	0.698146	164.777	498.798
L2 ₂ -Mn	2.299	0.584451	195.7073	562.8937
L2 ₂ -Zn	2.2294	1.093747	162.5358	599.4113
L2 ₂ -Fe	2.2333	0.692646	168.3102	633.2856

Table S10 The results of octahedral distortion calculator

 d_{mean} which refers to the average metal-ligand distances in the octahedral coordination sphere. The parameter ζ is the sum of the deviation of 6 unique metal-ligand bond lengths around the central metal atom (di) from the average value (d_{mean}). The parameter Σ is the sum of the deviation of 12 unique cis ligand-metal-ligand angles (ϕ_i) from 90°. The parameter Θ is the sum of the deviation of 24 unique torsional angles between the ligand atoms on opposite triangular faces of the octahedron viewed along the pseudo-threefold axis (θ_i) from 60°.

Photophysical properties

Fig. S48 UV-vis spectra of ligand L2 (c = 1×10^{-5} M) in CH₂Cl₂.

Fig. S49 UV-vis spectra of complex L1₂-Mn and L2₂-Mn ($c = 1 \times 10^{-5}$ M) in CH₃CN.

Fig. S50 UV-vis of spectra complex L1₂-Co and L2₂-Co ($c = 1 \times 10^{-5}$ M) in CH₃CN.

Fig. S51 UV-vis of spectra complex L1₂-Zn and L2₂-Zn ($c = 1 \times 10^{-5}$ M) in CH₃CN.

Fig. S52 UV-vis of spectra complex L1₂-Cu and L2₂-Cu ($c = 1 \times 10^{-5}$ M) in CH₃CN.

Fig. S53 UV-vis spectra of complex L1₂-Ni and L2₂-Ni ($c = 1 \times 10^{-5}$ M) in CH₃CN.

Fig. S54 UV-vis spectra of complex L1₂-Fe and L2₂-Fe ($c = 1 \times 10^{-5}$ M) in CH₃CN.

Fig. S55 Normalized fluorescence spectra of ligand L1 ($\lambda_{ex} = 276$ nm, c = 1 × 10⁻⁵ M) and L2 ($\lambda_{ex} = 320$ nm, c = 1 × 10⁻⁵ M) in CH₂Cl₂.

Fig. S56 Normalized spectra of complex L1₂.Zn (λ_{ex} = 355 nm) and L2₂.Zn (λ_{ex} = 410 nm) in solid state.

Fig. S57 Normalized fluorescence spectra of complex L1₂-Zn ($\lambda_{ex} = 280$ nm, c = 1 × 10⁻⁵ M) and L2₂-Zn ($\lambda_{ex} = 350$ nm, c = 1 × 10⁻⁵M) in CH₃CN.

Fig. S58 Fluorescence excitation spectra of complex L2₂-Zn ($\lambda_{em} = 500$ nm, $c = 1 \times 10^{-5}$ M) in CH₃CN.

Fig. S59 Fluorescence spectra of complex L2₂-Zn ($\lambda_{ex} = 400$ nm, c = 1 × 10⁻⁵ M) in CH₂Cl₂.

Fig. S60 Fluorescence spectra of complex L2₂-Zn ($\lambda_{ex} = 400$ nm, c = 1 × 10⁻⁵ M) in DMF.

Fig. S61 Fluorescence spectra of complex L2₂-Zn ($\lambda_{ex} = 400$ nm, c = 1 × 10⁻⁵ M) in DMSO.

Fig. S62 Normalized fluorescence spectra of complex L2₂-Zn (c = 1×10^{-5} M) in CH₃CN/CH₂Cl₂/DMSO/DMF/CH₃CN).

Fig. S63 Fluorescence spectra of complex L2₂-Zn in CH₃CN (Ex = 260 nm - 400 nm, $c = 1 \times 10^{-5}$ M) in CH₃CN.

Fig. S64 Normalized fluorescence spectra of complex L1₂-Mn ($\lambda_{ex} = 280$ nm, $c = 1 \times 10^{-5}$ M) and L2₂-Mn ($\lambda_{ex} = 380$ nm, $c = 1 \times 10^{-5}$ M) in CH₃CN.

Fig. S65 Fluorescence spectra of complex L1₂-Cu ($\lambda_{ex} = 280$ nm, c = 1 × 10⁻⁵ M) and L2₂-Cu ($\lambda_{ex} = 300$ nm, c = 1 × 10⁻⁵ M) in CH₃CN.

Fig. S66 Fluorescence spectra of complex L1₂-Fe ($\lambda_{ex} = 280$ nm, c = 1 × 10⁻⁵ M) and L2₂-Fe ($\lambda_{ex} = 300$ nm, c = 1 × 10⁻⁵ M) in CH₃CN.

Fig. S67 Fluorescence spectra of complex L1₂-Co ($\lambda_{ex} = 280$ nm, c = 1 × 10⁻⁵ M) and L2₂-Co ($\lambda_{ex} = 300$ nm, c = 1 × 10⁻⁵ M) in CH₃CN.

Fig. S68 Fluorescence spectra of complex L1₂-Ni ($\lambda_{ex} = 280$ nm, c = 1 × 10⁻⁵ M) and L2₂-Ni ($\lambda_{ex} = 300$ nm, c =1 × 10⁻⁵ M) in CH₃CN.

Fig. S69 Absolute fluorescence quantum yield of ligand L1 ($\lambda_{ex} = 280$ nm, c = 1 × 10⁻⁵ M) in CH₂Cl₂.

Fig. S70 Absolute fluorescence quantum yield of ligand L2 ($\lambda_{ex} = 280$ nm, c = 1 × 10⁻⁵ M) in CH₃Cl₂.

Fig. S71 Absolute fluorescence quantum yield of complex L1₂-Zn ($\lambda_{ex} = 280$ nm, c = 1 × 10⁻⁵ M) in CH₃CN.

Fig. S72 Absolute fluorescence quantum yield of complex L2₂-Zn ($\lambda_{ex} = 350$ nm, c = 1 × 10⁻⁵ M) in CH₃CN.

Fig. S73 Absolute fluorescence quantum yield of complex L1₂-Co ($\lambda_{ex} = 284$ nm, c = 1 × 10⁻⁵ M) in CH₃CN.

Fig. S74 Absolute fluorescence quantum yield of complex L2₂-Co ($\lambda_{ex} = 271$ nm, c = 1 × 10⁻⁵ M) in CH₃CN.

Fig. S75 Absolute fluorescence quantum yield of complex L1₂-Cu ($\lambda_{ex} = 273$ nm, c = 1 × 10⁻⁵ M) in CH₃CN.

Fig. S76 Absolute fluorescence quantum yield of complex $L2_2$ -Cu ($\lambda_{ex} = 271$ nm, $c = 1 \times 10^{-5}$ M) in CH₃CN.

Fig. S77 Absolute fluorescence quantum yield of complex L1₂-Fe ($\lambda_{ex} = 284$ nm, c = 1 × 10⁻⁵ M) in CH₃CN.

Fig. S78 Absolute fluorescence quantum yield of complex L2₂-Fe (λ_{ex} = 321 nm, c = 1 × 10⁻⁵ M) in CH₃CN.

Fig. S79 Absolute fluorescence quantum yield of complex L1₂-Ni ($\lambda_{ex} = 273$ nm, c = 1 × 10⁻⁵ M) in CH₃CN.

Fig. S80 Absolute fluorescence quantum yield of complex L1₂-Ni ($\lambda_{ex} = 280$ nm, c = 1 × 10⁻⁵ M) in CH₃CN.

Table S11 Photophysical properties of ligand L1, L2 and complex L12-Zn, L22-Zn

Absorption ^a				Lu	minescence	· · · · · · · · · · · · · · · · · · ·		
Compound	λ _{max} (nm)	$\epsilon_{max}~(M^{\text{-l}} \cdot cm^{\text{-l}})$	λ_{ex} (nm) liqud	λ _{max} (nm) Liquid	λ_{ex} (nm) solid	λ_{max} (nm) solid	φm(%) ^{a,b}	solvent
L1	280	23726	281	340	340	393	17.95	CH ₂ Cl ₂
L2	261	41751	325	373	420	450	31.66	CH ₂ Cl ₂
L12-Zn	285	69500	300	350	352	468	48,21	CH ₃ CN
L22-Zn	285	62946	350	500	403	403	60.46	CH ₃ CN

^a Air-equilibrated acetonitrile solution in 298K. ^b excitation at 350 nm and uncertainty over the measures is estimated to be 20%.

Fig. S81 Time-resolved fluorescence decay curves L2₂-Zn ($\lambda_{ex} = 375 \text{ nm c} = 1 \times 10^{-5} \text{ M}$) and L2 ($\lambda_{ex} = 290 \text{ nm}$, $c = 1 \times 10^{-5} \text{ M}$) of persistent emission of in CH₃CN.

Fig. S82 ECD spectra of L2₂-Fe (c = 1×10^{-5} M) in CH₃CN.

Fig. S85 ECD spectra of L2₂-Mn (c = 1×10^{-5} M) in CH₃CN.

Density Functional Theory (DFT) Calculation

Fig. S88 Frontier molecular orbitals of L1₂-Zn.

Fig. S89 Frontier molecular orbitals of L2₂-Zn.

Table S12 The calculated energy levels, oscillator strengths (f), and molecular orbital transition analyses of L12-Zn and L22-Zn in CH₃CN.

	State	λ(nm)	f	Assignments
	S0 . S1	312	0.2575	$HOMO \rightarrow LUMO (55.3\%)$
	50→51			HOMO-3 \rightarrow LUMO+1 (25.7%)
	<u>60 . 62</u>	311	0.3257	HOMO \rightarrow LUMO+1 (43.3%)
L1 ₂ -Zn	50→52			HOMO-3 \rightarrow LUMO (32.6%)
	80.82	297	0.8845	HOMO-2 \rightarrow LUMO (54.9%)
	50→53			HOMO-1 \rightarrow LUMO+1 (30.9%)
L2 ₂ -Zn	S0→S1	401	0.0038	$HOMO \rightarrow LUMO (92.0\%)$
				-
	60 60	387	0.0011	HOMO-1 \rightarrow LUMO (63.3%)
	30→32			$HOMO \rightarrow LUMO+1 (33.3\%)$
	80.82	000	0.0056	HOMO-2 \rightarrow LUMO (93.3%)
	50→53 382	362	0.0056	-

 $Table \ S13 \ \text{Experimental and calculated optical characteristics for } L1_2-Zn \ \text{and} \ L2_2-Zn \ \text{in CH}_3\text{CN}.$

	Absorption $S_0 \rightarrow S_1$			Emission $S_1 \rightarrow S_0$			
	$\lambda_{exp}(nm)$	$\lambda_{calc}(nm)$	f	$\lambda_{exp}(nm)$	$\lambda_{calc} (nm)$	f	
L1 ₂ -Zn	338	312	0.2575	349	352	0.5931	
L2 ₂ -Zn	372	401	0.0038	500	496	0.0036	

Reference

[1] G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2013.

[2] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, The Journal of chemical physics 2010, 132, 154104.

[3] Tian Lu, Feiwu Chen, J. Comput. Chem., 2012, 33, 580-592.

[4] Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics" J. Molec. Graphics 1996, 14.1, 33-38.

[5]. McMurtrie, J.; Dance, I., Crystal packing in metal complexes of 4'-phenylterpyridine and related ligands: occurrence of the 2D and 1D terpy embrace arrays. CrystEngComm 2009, 11 (6).

[6]. Zhang, Y.; Zhou, P.; Liang, B.; Huang, L.; Zhou, Y.; Ma, Z., Effects of counterions of colorful sandwich-type zinc(II) 4'-phenyl-terpyridine compounds on photoluminescent and thermal properties. Journal of Molecular Structure 2017, 1146, 504-511.

[7]. Brauchli, S. Y.; Constable, E. C.; Harris, K.; Haussinger, D.; Housecroft, C. E.; Rosel, P. J.; Zampese, J. A., Towards catenanes using pi-stacking interactions and their influence on the spinstate of a bis(2,2':6',2"terpyridine)iron(II) domain. Dalton Trans 2010, 39 (44), 10739-48.

[8].Ketkaew, R.; Tantirungrotechai, Y.; Harding, P.; Chastanet, G.; Guionneau, P.; Marchivie, M.; Harding, D. J., OctaDist: a tool for calculating distortion parameters in spin crossover and coordination complexes. Dalton Trans 2021, 50 (3), 1086-1096.