BODIPY-GO Nanocomposites Decorated with Biocompatible Branched Ethylene glycol

Moiety for Targeted PDT

Ezel ÖZTÜRK GÜNDÜZ^a, Rovshen ATAJANOV^a, M. Emre GEDIK^b, Esra TANRIVERDİ EÇİK^c, Gurcan GUNAYDIN^b, Elif OKUTAN^{a*}

^a Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli,

Türkiye

^b Department of Basic Oncology, Cancer Institute, Hacettepe University, Çankaya, Ankara 06100 Turkey

^c Department of Chemistry, Faculty of Science, Atatürk University, Yakutiye, Erzurum, Türkiye

*Author for correspondence:

Dr. Elif OKUTAN, Department of Chemistry, Gebze Technical University, P.O.Box: 141, Gebze

41400, Kocaeli, Turkey

Tel: 00 90 262 6053091

Fax: 00 90 262 6053105

e-mail: eokutan@gtu.edu.tr

O

Scheme S1. Synthesis of compounds 1-6.

Fig. S6 ¹³C NMR spectrum of compound 2 in CDCl₃

Fig. S8 ¹H NMR spectrum of compound 3 in CDCl₃

Fig. S10 MALDI-MS spectrum of compound 4

Fig. S12 ¹³C NMR spectrum of compound 4 in CDCl₃

Fig. S14 ¹H NMR spectrum of compound 5 in CDCl₃

Fig. S15 ¹³C NMR spectrum of compound 5 in CDCl₃

Fig. S16 MALDI-MS spectrum of compound 6

Fig. S18 ¹³C NMR spectrum of compound 6 in CDCl₃

Fig. S20 ¹H NMR spectrum of compound 7 in CDCl₃

Fig. S22 MALDI-MS spectrum of compound 8

Fig. S24 ¹³C NMR spectrum of compound 8 in CDCl₃

Fig. S26 ¹H NMR spectrum of compound 9 in CDCl₃

Fig. S28 MALDI-MS spectrum of compound 10

Fig. S30 ¹³C NMR spectrum of compound 10 in CDCl₃

Fig. S32 ¹H NMR spectrum of compound 11 in CDCl₃

Fig. S34 MALDI-MS spectrum of compound 12

Fig. S36 ¹³C NMR spectrum of compound 12 in CDCl₃

Fig. S37 FT-IR spectrum of compound 13

Fig. S39¹H NMR spectrum of compound 13 in CDCl₃

Fig. S41 FT-IR spectrum of compound 14

Fig. S43 ¹H NMR spectrum of compound 14 in CDCl₃

Fig. S45 FT-IR spectrum of compound 15

Fig. S47¹H NMR spectrum of compound 15 in CDCl₃

Fig. S49 FT-IR spectra of compound 13, GO and GO-13

Fig. S51 FT-IR spectra of compound 15, GO and GO-15

Fig. S52 Raman spectra of GO, GO-13, GO-14, and GO-15

Fig. S53 (a) AFM images and (b) TEM micrographs of GO

Fig. S55 TEM-EDX analysis of GO-14

Fig. S56 TEM-EDX analysis of GO-15

Fig. S57 Absorbance spectra of compound 13 in different solvents (2 μ M)

Fig. S58 Absorbance spectra of compound 14 in different solvents (2 μ M)

Fig. S59 Absorbance spectra of compound 15 in different solvents (2 μ M)

Fig. S60 Absorbance spectra of GO-13 in different solvents (2 μ M)

Fig. S62 Absorbance spectra of GO-15 in different solvents (2 μ M)

Fig. S63 Absorption spectra of compound 13 in DMSO at different concentrations

Fig. S64 Absorption spectra of compound 14 in DMSO at different concentrations

Fig. S65 Absorption spectra of compound 15 in DMSO at different concentrations

Fig. S66 Fluorescence spectra of compound 13 (λ_{ex} :610 nm) in different solvents (0.5 μ M)

Fig. S67 Fluorescence spectra of compound 14 (λ_{ex} :640 nm) in different solvents (0.5 μ M)

Fig. S68 Fluorescence spectra of compound 15 (λ_{ex} :640 nm) in different solvents (0.5 μ M)

Fig. S69 Fluorescence spectra of GO-13 (λ_{ex} :610 nm) in different solvents (0.5 μ M)

Fig. S70 Fluorescence spectra of GO-14 (λ_{ex} :640 nm) in different solvents (0.5 μ M)

Fig. S71 Fluorescence spectra of GO-15 (λ ex:640 nm) in different solvents (0.5 μ M)

Fig. S72 Fluorescence decay profiles of 13-15 and GO-(13-15) in DMSO

Fig. S74. Decrease in absorbance spectra of DPBF in the presence of GO in DMSO

Fig. S75. Decrease in absorbance spectra of DPBF in the presence of MB in DMSO