Halogen engineering of organic-inorganic hybrid perovskites with nonlinear optical, fluorescence properties and phase transition

Gele Teri, Qiang-Qiang Jia, Hao-Fei Ni, Jun-Qin Wang, Da-Wei Fu* and Qiang Guo*
Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
E-mail: dawei@seu.edu.cn;qiangguo@zjnu.edu.cn

Synthetic procedures

Synthesis of (4-methoxybenzylammonium) ${ }_{2} \mathrm{ZnI}_{4}$ (1)
All of reagents involved in the experiments were purchased from chemical companies and were used without any further purification. HI, 4-methoxybenzylamine, and zinc bromide were dissolved in methanol to obtain an alcohol solution and the mixed solution was stirred for a few minutes. The target product was got by slow evaporation of the mixed solution at room temperature after several days. Finally, colorless target crystals were obtained.
Synthesis of (4-methoxybenzylammonium) ${ }_{2} \mathrm{ZnBr}_{4}$ (2)
On the basis of synthesis $\mathbf{1}$, zinc iodide was replaced by zinc bromide and finally yellow target crystals were obtained.

Materials and methods

Dielectric constants were recorded on a Tonghui TH2828A instrument at frequencies of $5 \mathrm{kHz}, 10$ $\mathrm{kHz}, 100 \mathrm{kHz}$, and 1 MHz with a measured AC voltage of 1 V . Differential scanning calorimetry (DSC) was measured on a NETZSCH DSC 3500 instrument by heating and cooling at a rate of 20 $\mathrm{K} / \mathrm{min}$ under a nitrogen atmosphere. UV-near-infrared-visible (UV-NIR-vis) spectra were obtained on a Cary RF 6000 instrument, and the fluorescence spectra was determined on an FLS 9801 instrument. Powder X-ray diffraction (PXRD) data for two compounds were measured on a D8 Advance 03030502 at room temperature. Diffraction patterns were collected in the 2θ range of $5 \sim 55^{\circ}$ with a step size of 0.02°. The CIE coordination was calculated by 1931 CIE package. Crystallographic data of the title compounds was restored by SPEX-III software, and absorption was corrected by multi-scan (ω) mothed. Furthermore, the crystal structure factors were solved by least squares. Meanwhile, structural factors were refined by SHLXT and OLEX software, and non-hydrogen atoms were refined and positioned by operation of anisotropy. The figures of the title compounds were carried out by DIAMOND package.

Fig. S1 Single crystals of compounds 1 and 2.

Fig. S2 Powder X-ray diffraction (PXRD) for compounds $\mathbf{1}$ and 2.

Fig. S3 (a and b) Dielectric and DSC curves of $\mathbf{2}$.

Table S1 Crystallographic data and structural refinement details of compound $\mathbf{1}$

Compound	$\left(\mathrm{MBA}_{2} \mathrm{ZnI}_{4}\right.$	
	LTP	HTP
CCDC Code	2212096	2212097
Formula	$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{I}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Zn}$	$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{I}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Zn}$
Fw	849.34	849.34
Temp (K)	300	363
Crystal Syst	Monoclinic	Monoclinic
Space group	$P 2_{1} / n$	$P 2_{1} / c$
$a(\AA)$	$17.3830(7)$	$11.330(4)$
$b(\AA)$	$8.2623(4)$	$8.298(3)$
$c(\AA)$	$18.0124(7)$	$27.754(9)$
$\alpha /^{\circ}$	90	90
$\beta /^{\circ}$	$102.45(3)$	$90.45(3)$
$\gamma /{ }^{\circ}$	90	90
$V\left(\AA^{3}\right)$	$2526.08(19)$	$2609.2(15)$
Z	4	4
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	5.872	5.685
GOF on F^{2}	1.050	1.074
$R_{1}[[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0353	0.0447
$w R_{2}($ all data $)$	0.0615	0.0999

Table S2 Crystallographic data and structural refinement details of compound 2

Compound	$(\mathrm{MBA})_{2} \mathrm{ZnBr}_{4}$
CCDC Code	2212095
Formula	$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Zn}$
Fw	661.38
Temp (K)	273
Crystal Syst	Monoclinic
Space group	$P 2_{1}$
$a(\AA)$	$10.871(4)$
$b(\AA)$	$7.644(3)$
$c(\AA)$	$13.574(5)$
$\alpha /^{\circ}$	90
$\beta /^{\circ}$	$92.486(9)$
$\gamma /{ }^{\circ}$	90
$V\left(\AA^{3}\right)$	$1126.9(7)$
Z	2
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	8.193
GOF on F^{2}	0.993
$R_{1}[[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0423
$w R_{2}(\mathrm{all}$ data $)$	0.0800

Table S3 Selected bond lengths / \AA and angles $/{ }^{\circ}$ for compound 1

Compound 1			
LTP		HTP	
I1-Zn1	2.6081(7)	I1-Zn1	$2.6059(13)$
I3-Zn1	$2.6120(7)$	I2-Zn1	2.6314(12)
I2-Zn1	$2.6078(7)$	I3-Zn1	$2.6152(15)$
I4-Zn1	2.6233(7)	I4-Zn1	$2.6255(15)$
O1-C5	$1.365(6)$	N1B-C1B	$1.465(15)$
O1-C8	$1.423(7)$	O2-C5	$1.373(12)$
N2-C16	$1.473(7)$	O2-C9	$1.447(15)$
O2-C15	$1.366(7)$	C11-C16	1.384(12)
O2-C9	1.421(8)	C11-C12	1.351(14)
C5-C6	$1.381(7)$	C11-C10B	1.490 (14)
C5-C4	$1.366(7)$	C2-C7	$1.376(12)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.371(8)$	C2-C1A	$1.513(13)$
C2-C3	$1.377(8)$	N2B-C10B	$1.455(14)$
C2-C1	$1.496(8)$	O3-C17	$1.364(13)$
C12-C16	$1.513(8)$	O3-C14	$1.400(13)$
C12-C11	$1.380(8)$	C2-C3	1.387(12)
C12-C13	$1.373(7)$	C16-C15	$1.349(12)$
C6-C7	$1.381(7)$	C7-C6	$1.375(13)$
N1-C1	$1.456(8)$	C5-C6	$1.356(13)$
C4-C3	1.390 (8)	C5-C4	1.391 (14)
C11-C10	1.390 (8)	C5-O1	$1.406(14)$
C13-C14	1.363 (8)	C14-C15	$1.332(13)$
C10-C15	$1.362(8)$	C14-C13	$1.376(14)$
C15-C14	1.378 (8)	C14-O3	$1.400(17)$
I1-Zn1-I3	108.58(3)	C4-C3	$1.367(13)$
I1-Zn1-I4	108.93(3)	C13-C12	$1.407(14)$
I3-Zn1-I4	109.06(3)	N2A-C10A	$1.482(14)$
I2-Zn1-I1	109.38(2)	O3-C17	$1.364(13)$
I2-Zn1-I3	108.23(2)	I1-Zn1-I2	108.11(5)
I2-Zn1-I4	112.58(3)	I1-Zn1-I4	109.89(4)
		I3-Zn1-I1	110.00(4)
		I3-Zn1-I2	107.34(4)
		I3-Zn1-I4	112.77(4)
		I4-Zn1-I2	108.59(4)

Table S4 Selected bond lengths $/ \AA$ and angles $/{ }^{\circ}$ for compound 2

	Compound 2		
$\mathrm{Br} 1-\mathrm{Zn} 1$	$2.4085(17)$	$\mathrm{O} 2-\mathrm{C} 10$	$1.368(12)$
$\mathrm{Br} 2-\mathrm{Zn} 1$	$2.4020(17)$	$\mathrm{N} 2-\mathrm{C} 16$	$1.465(13)$
$\mathrm{Br} 3-\mathrm{Zn} 1$	$2.4086(17)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.400(14)$
$\mathrm{Br} 4-\mathrm{Zn} 1$	$2.4052(16)$	$\mathrm{C} 10-\mathrm{C} 15$	$1.366(14)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.378(11)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.380(15)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.423(14)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.382(15)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.407(14)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.400(14)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.501(14)$	$\mathrm{C} 13-\mathrm{C} 16$	$1.517(13)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.372(14)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.399(14)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.383(14)$	$\mathrm{Br} 1-\mathrm{Zn} 1-\mathrm{Br} 3$	$109.27(6)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.375(14)$	$\mathrm{Br} 2-\mathrm{Zn} 1-\mathrm{Br} 1$	$111.08(6)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.381(14)$	$\mathrm{Br} 2-\mathrm{Zn} 1-\mathrm{Br} 3$	$110.30(5)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.379(14)$	$\mathrm{Br} 2-\mathrm{Zn} 1-\mathrm{Br} 4$	$107.28(6)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.388(13)$	$\mathrm{Br} 4-\mathrm{Zn} 1-\mathrm{Br} 1$	$110.71(6)$
$\mathrm{O} 2-\mathrm{C} 9$	$\mathrm{Br} 4-\mathrm{Zn} 1-\mathrm{Br} 3$	$108.13(6)$	

