A Combined Experimental and Theoretical Study of RuO₂/TiO₂ Heterostructures as a Photoelectrocatalyst for Hydrogen Evolution

Supporting Information

Mohammad Kaikhosravi^a, Hassan Hadadzadeh^{a*}, Hossein Farrokhpour^a, Abdollah Salimi^b, Hamed Mohtasham^b, Annette Foelske^c, and Markus Sauer^c

^a Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran

^b Department of Chemistry, University of Kurdistan, Sanandaj 66177-15175, Iran

^c Analytical Instrumentation Center, TU Wien, Lehargasse 6, 1060 Vienna, Austria

* Corresponding Author: Hassan Hadadzadeh, Email: <u>hadad@iut.ac.ir</u>

Twenty pages (page S1-page S20) and nineteen figures (Figure S1-S19).

Synthesis route for the preparation of Na₂[Ti(C₂O₄)₃]

TiCl₄ (1.75 g, 0.001 mol, 1 eq), Na₂C₂O₄ (0.54 g, 0.004 mol, 3.7 eq), and AgNO₃ (0.68 g, 0.004 mol, 4 eq) were suspended in dried acetone (10 mL) and stirred in a flask covered with a black paper for 1 h. The silver chloride (AgCl) precipitated was centrifuged off and then anhydrous ether was added to precipitate the crude product. The obtain precipitate was recrystallized from ethanol. (Yield: ca. 70%)

Figure S1: FTIR spectra of the TiO₂ samples calcined at various temperatures (a: 400 °C, b: 500 °C, and c: 600 °C), and d: 8 wt % RuO₂/TiO₂) heterostructure.

Figure S2: Band gaps of the RuO₂/TiO₂ heterostructures calculated by converting the reflectance to the absorption values by the utilization of the Kubelka-Munk algorithm.

Figure S3: FESEM images of the mesoporous TiO₂ (a, b, and c prepared at 400, 500, and 600 °C, respectively), and 8 wt % RuO₂/TiO₂ heterostructure.

Figure S4: Elemental mappings of 8 wt % RuO₂/TiO₂ heterostructure, (a) all elements, (b) titanium, (c) oxygen, and (d) ruthenium.

Figure S5. Nitrogen adsorption–desorption isotherms and the corresponding pore size distributions (inset) of the pure TiO₂ (red) and 8 wt % RuO₂/TiO₂ (blue) photoelectrocatalyst.

Figure S6: Linear sweep voltammograms of RuO₂/TiO₂ heterostructures towards HER under dark and light conditions.

Figure S7: Linear sweep voltammograms of the 8 wt % RuO₂/TiO₂ heterostructure towards HER before and after 1000 potential cycles.

Figure S8: Optimized TiO₂ Clusters (a), HOMO (b), and LUMO (c).

Figure S9: Optimized RuO₂/TiO₂ clusters in different orientations.

Figure S10: Several occupied and unoccupied molecular orbitals (HOMO-7 to LUMO+7) and fragments contributions in RuO₂/TiO₂ cluster **a**.

Figure S11: Several occupied and unoccupied molecular orbitals (HOMO-7 to LUMO+7) and fragments contributions in RuO₂/TiO₂ cluster **b**

Figure S12: Several occupied and unoccupied molecular orbitals (HOMO-7 to LUMO+7) and fragment contributions in RuO₂/TiO₂ cluster **c**

Figure S13: Several occupied and unoccupied molecular orbitals (HOMO-7 to LUMO+7) and fragment contributions in RuO₂/TiO₂ cluster **d**.

Figure S14: Occupied molecular orbitals (HOMO to HOMO-13) of cluster e.

Figure S15: Unoccupied molecular orbitals (LUMO to LUMO+13) of cluster e.

Figure S16: Occupied molecular orbitals (HOMO to HOMO-13) of cluster f.

Figure S17: Unoccupied molecular orbitals (LUMO to LUMO+13) of cluster f.

Figure S18: Occupied molecular orbitals (HOMO to HOMO-13) of cluster g.

Figure S19: Occupied molecular orbitals (LUMO to LUMO+13) of cluster g.