Supporting Information

Synergistic zinc-ion storage enabled by Cu ion in anthraquinone -preinserted vanadate: structural integrity and H⁺-promoted

reversible phase conversion

Kai Li, Yang Liu, Rui Tang and Yun Gong*

Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China. E-mail: gongyun7211@cqu.edu.cn; Tel: +86 023 65678932

Experimental section

Materials

Vanadium pentoxide (V_2O_5) and hydrogen peroxide (H_2O_2 , 30 %) were purchased from Chengdu Cologne Chemicals Co. Ltd and Shanghai Myrell Chemical Technology Co. Ltd, respectively. In addition, 2-methylanthraquinone (2-M-AQ) was obtained from Saen Chemical Technology (Shanghai) Co. Ltd. All reagents were of analytical grade and used directly. Zn foil (thickness: 0.1 mm) was obtained from Runde Metal Materials Co. Ltd. Carbon cloth (W0S1009, thickness: 0.1 mm) was purchased from Suzhou Sinero Technology Co. Ltd. Glass fiber membrane (Grade GF/D) was obtained from Whatman Company.

Synthesis of (C₁₅H₁₀O₂)_{0.1}V₂O₅·0.4H₂O [denoted as (2-M-AQ)-VO]

(2-M-AQ)-VO was obtained by one-step solvothermal method. Firstly, 50 mg V₂O₅ was dissolved into the solution of 4.5 mL deionized water and 0.5 mL H₂O₂ (30 %) under ultrasonic treatment. Meanwhile, 45 mg 2-methylanthraquinone (2-M-AQ) was dispersed in 5 mL absolute ethyl alcohol under same condition. Then the mixture was sealed in a 15 mL autoclave and maintained at 150 °C for 12 h. After naturally cooling to room temperature, the precipitation was washed by distilled water and ethanol, then

collected by freeze drying.

Material characterization

The structures and phase purities of the samples were detected by powder X-ray diffractometer (XRD) (PANalytical X'pert Pro MPD) with Cu K α radiation (λ = 1.54056 Å). Fourier transform infrared (FT-IR) spectra were recorded on IR spectrometer (IRTracer-100). Thermogravimetric (TG) curve was obtained from a METTLER TOLEDO TGA2 analyzer. CH elemental analyses were measured on an Elementar Analyzer (GmbH, Germany). X-ray photoelectron spectra (XPS) were performed on an ESCALAB 250 analyzer. Electron paramagnetic resonance (EPR) spectroscopy analyses was performed using an EPR (BRUKE EMXPLUS) with the center field of 3510 G and sweep width of 100 G. The morphologies, energy-dispersive X-ray spectroscopy (EDS) and elemental mappings of the samples were detected by scanning electron microscope (SEM, Thermo Fisher Quattro S) equipped with an EDS analyzer (AMETEK). Transmission electron microscopy (TEM), high resolution TEM (HRTEM) and selected area electron diffraction (SAED) images were obtained from transmission electron microscope (TEM, Thermo Talos F200S).

Electrochemical measurement

The (2-M-AQ)-VO sample was mixed with acetylene black, graphite powder and polyvinylidene fluoride (PVDF, served as binder) with a weight ratio of 5: 2: 1: 1 using N-methyl pyrrolidone (NMP) as solvent. The obtained slurry was evenly coated onto carbon cloth and dried at 120 °C in vacuum for 6 h.

The electrochemical measurements were performed in coin cells (CR2032) using Zn foil as the counter electrode. The mass loading of active material is in the range of 2.8 \sim 3.6 mg cm⁻². 3 M Zn(CF₃SO₃)₂ or the mixture of 2.8 M Zn(CF₃SO₃)₂ and 0.2 M CuSO₄ aqueous solution was used as the electrolyte. Cyclic voltammogram (CV) and

electrochemical impedance spectroscopy (EIS) were carried out on a CHI660E electrochemical workstation. Galvanostatic charge/discharge (GCD) and galvanostatic intermittent titration technique (GITT) measurements were implemented using LAND (CT2001A) battery-test system with the voltage range from 0.2 to 1.6 V.

Density functional theory (DFT) calculations

DFT calculations were conducted to investigate the binding energies of Zn²⁺, Cu⁺, and H⁺ in (2-M-AQ)-VO via the Vienna ab initio simulation package (VASP).¹ The projector augmented wave (PAW) method with Perdew–Burke–Ernzerhof (PBE) functional was implemented in electronic structure calculations.² The cut-off energy of 500 eV and Monkhorst–Pack *k*-point mesh of $3 \times 3 \times 3$ grid were adopted. The convergence threshold for the force and energy were set to 0.01 eV Å⁻¹ and 10⁻⁶ eV, respectively.³

The measurement and lattice parameters for (2-M-AQ)-VO								
Diffractometer	PANalytical Empyrean	Radiation	Cu Ka					
2-Theta (°)	5-120	Step size (°)	0.01313					
Chemical	$(C_{15}H_{10}O_2)_{0.1}V_2O_5 \cdot 0.4H_2O_5$	Cell	1122.2 (4)					
formula		Volume (Å ³)	-					
Crystal system	Triclinic	Space group	$P\bar{1}$					
a (Å)	11.6939 (25)	a (°)	89.039 (25)					
b (Å)	7.1174 (23)	β (°)	88.443 (33)					
c (Å)	13.4904 (30)	γ (°)	89.595 (14)					
R _p (%)	6.10	R _{wp} (%)	8.53					
Selected atom parameters in (2-M-AQ)-VO								
Atom from V-	Coordinate (error)	Multiplicity	Occupancy					
O-V layer	0.630(1) 0.716(2) 0.127(1)	2	1					
V1 V2	0.030(1), 0.710(2), 0.127(1)	2	1					
V2	0.079(1), 0.331(2), 0.160(1)	Z	1					
V3	0.906(1), 0.014(2), 0.140(1)	2	1					
V4	0.493(2), -0.013(2), 0.170(1)	2	1					
V5	0.215(1), 0.803(2), 0.143(1)	2	1					
V6	0.194(1), 0.186(1), 0.141(1)	2	1					
V7	0.419(1), 0.391(2), 0.157(1)	2	1					
V8	0.970(1), 0.485(2), 0.148(1)	2	1					
01	0.814(2), 0.522(2), 0.124(2)	2	1					
O2	0.538(8), 0.560(2), 0.142(6)	2	1					
O3	0.790(2), 0.194(2), 0.080(2)	2	1					
O4	0.531(9), 0.257(3), 0.146(6)	2	1					
O5	0.831(2), 0.868(2), 0.087(2)	2	1					
O6	0.571(2), 0.894(2), 0.097(2)	2	1					
07	0.311(2), 0.986(2), 0.124(2)	2	1					
O8	0.082(2), 0.965(2), 0.104(2)	2	1					
09	0.289(2), 0.310(2), 0.078(2)	2	1					
O10	0.026(2), 0.263(2), 0.120(2)	2	1					
011	0.332(2), 0.635(2), 0.089(2)	2	1					

Table S1 The details of Rietveld refinement for (2-M-AQ)-VO.

Fig. S1 The survey XPS of (2-M-AQ)-VO.

S1 The characterization of V₂O₅·*n*H₂O

The preparation of V₂O₅·*n*H₂O was similar to that of (2-M-AQ)-VO except in the absence of 2-M-AQ. Its XRD pattern and that of the commercial V₂O₅ are shown in **Fig. S2a**. It can be seen that the commercial V₂O₅ crystallizes in orthorhombic crystal system (JCPDS No. 72-0433) with the strongest diffraction peak observed at 20.3 °. After hydrothermal reaction, the obtained V₂O₅·*n*H₂O shows the strongest diffraction peak at 7.7 °, suggesting the interlayer spacing is expanded to be ~11.5 Å due to the intercalation of H₂O.

Fig. S2 (a) XRD patterns of $V_2O_5 \cdot nH_2O$, the commercial V_2O_5 and the standard profile; (b-d) SEM images of $V_2O_5 \cdot nH_2O$.

Fig. S³ The SEM image of (2-M-AQ)-VO.

Fig. S4 EDS as well as elemental mappings of (2-M-AQ)-VO.

Fig. S5 The first three CVs of $V_2O_5 \cdot nH_2O$ and 2-M-AQ.

Capacity Material **Specific capacity** Cycle number Reference retention 282 mAh g⁻¹ 4 $Zn_{0.25}V_2O_5 \cdot nH_2O$ 1000 (2.4 A g⁻¹) 80.0 % at 0.3 A g⁻¹ 402 mAh g⁻¹ $\delta\text{-Ni}_{0.25}V_2O_5\cdot$ 5 1200 (5.0 A g⁻¹) 98.0 % at 0.2 A g⁻¹ nH₂O 415 mAh g⁻¹ 6 MnVO 2000 (4.0 A g⁻¹) 92.0 % at 0.05 A g⁻¹ 470 mAh g⁻¹ $Li_xV_2O_5$ 7 1000 (10.0 A g⁻¹) 93.0 % at 0.05 A g⁻¹ ·n H₂O 353 mAh g⁻¹ $Mg_{0.34}V_2O_5$ 8 2000 (5.0 A g⁻¹) 97.0 % at 0.05 A g⁻¹ $\cdot 0.84H_2O$ 418 mAh g⁻¹ 9 AlVO 1000 (5.0 A g⁻¹) 90.5 % at 0.2 A g⁻¹ 268.2 mAh g⁻¹ 10 PA-VOP 2000 (5.0 A g⁻¹) 92.3 % at 0.1 A g⁻¹ 356.8 mAh g⁻¹ 11 5000 (10.0 A g⁻¹) PEDOT-NVO 94.1 % at 0.05 A g⁻¹ 313.6 mAh g⁻¹ 12 bilayer-VOP 2000 (5.0 A g⁻¹) 76.8 % at 0.1 A g⁻¹ 422 (286) mAh g⁻¹ 1000 (1 A g⁻¹) 73.6 % (2-M-AQ)-VO This work at 0.2 (1) A g⁻¹ 2000 (5 A g⁻¹) 80.2 % 433 (381) mAh g⁻¹ 1000(1 A g⁻¹) (2-M-AQ)-VO ~100 % This work with Cu²⁺ at 0.2 (1) A g⁻¹ 3200 (5 A g⁻¹) ~100 %

Table S2 The comparison of the electrochemical performances of (2-M-AQ)-VO and other vanadium-based materials.

Fig. S6 (a) GITT profiles of (2-M-AQ)-VO-Cu²⁺; (b) The calculated ${}^{D}Zn^{2+}$ in V₂O₅·*n*H₂O and (2-M-AQ)-VO-Cu²⁺.

Sample/Elec	ctrolyte	$R_{\rm s}$ (Ω cm ⁻²)	$R_{\rm ct}$ (Ω cm ⁻²)	СРЕ	<i>W</i> (Ω cm ⁻²)
(2-M-AQ)-VO	$Zn^{2+} + Cu^{2+}$	1.40	2.60	4.0×10 ⁻²	9.37
(2-M-AQ)-VO	Zn^{2+}	1.21	8.33	3.1×10 ⁻²	10.57
$V_2O_5 \cdot nH_2O$	Zn^{2+}	1.44	12.66	5.8×10 ⁻³	0.44

Table S3 The parameters in the equivalent circuit for (2-M-AQ)-VO and $V_2O_5 \cdot nH_2O$.

Fig. S7(a-f) *Ex situ* SEM images and (**g-i**) EDS as well as elemental mappings of the (2-M-AQ)-VO electrode in 3 M Zn(CF₃SO₃)₂ during the 1st discharge and charge process, including (**a**, **b**, **g**) discharge to 0.2 V, (**c**, **d**, **h**) charge to 1.6 V and (**e**, **f**, **i**) the pristine electrode.

At. %	Pristine	1 st D 0.2	1 st C 1.6	1 st D 0.2 with Cu ²⁺	1 st C 1.6 with Cu ²⁺
Cu	/	/	/	0.31	0.13
V	6.88	5.13	8.75	7.31	6.12
0	8.79	34.26	8.75	18.80	5.98
С	71.92	38.39	66.12	48.16	73.49
F	7.49	12.26	9.24	3.88	9.86
N	4.92	2.32	2.53	1.01	1.30
S	/	0.75	0.25	2.21	0.60
Zn	/	6.88	4.36	18.31	2.52

Table S4 Element contents (at.%) of the (2-M-AQ)-VO electrode in the electrolyteswith and without Cu^{2+} under different states.

Fig. S8 (a-d) *Ex situ* SEM and (e, f) EDS as well as elemental mappings of the (2-M-AQ)-VO electrode in the electrolyte of 2.8 M $Zn(CF_3SO_3)_2$ and 0.2 M CuSO₄: (a, b, e) 1st discharge to 0.2 V and (c, d, f) charge to 1.6 V.

S2 Ex situ XPS spectra of the (2-M-AQ)-VO electrode in 3 M Zn(CF₃SO₃)₂

Fig. S9 *Ex situ* XPS of the (2-M-AQ)-VO electrode in 3 M $Zn(CF_3SO_3)_2$ at different states: (a) V 2p, (b) O 1s, (c) C 1s and (d) Zn 2p.

In addition, *ex situ* XPS of the (2-M-AQ)-VO electrode in 3 M Zn(CF₃SO₃)₂ have been measured. As shown in the **Fig. S9a**, the peaks located at 516.2 and 517.5 eV are assigned to V⁴⁺ 2p_{3/2} and V⁵⁺ 2p_{3/2} species, respectively.¹³ And the peaks at 523.4 and 524.9 eV are indexed to V⁴⁺ 2p_{1/2} and V⁵⁺ 2p_{1/2}, respectively.¹³ When discharge to 0.2 V, V³⁺ signals appear at 515.9 (2p_{3/2}) and 521.4 eV (2p_{1/2}),^{6, 8} and the V⁴⁺ signals are intensified along with the weakened of V⁵⁺ signals, suggesting that the partial reduction of V⁵⁺/V⁴⁺ into V⁴⁺/V³⁺. The charge process is reverse, indicating the oxidization of V⁴⁺/V³⁺ \rightarrow V⁵⁺/V⁴⁺ during the escape process of Zn²⁺ from (2-M-AQ)-VO. In the O 1s XPS fine spectra (**Fig. S9b**), the pristine AQ-VO electrode exhibits five peaks located at 530.2, 531.5, 531.9, 532.6 and 533.6 eV, which can be indexed to V-O, oxygen defect, C=O, C-O and H₂O, respectively.¹⁴⁻¹⁶ When the first charged to 0.2 V, the relative intensity of C=O group becomes weaker with the C-O signal intensified, which can be attributed to the reduction reaction of C=O + $e^- \rightarrow C$ -O in the discharge process. Then their relative intensities recover during the charge process, indicating the encouraging redox reversibility of the 2-M-AQ organic species. The C 1s fine spectra are presented in **Fig. S9c**, in which the variation tendencies of the C=O and C-O signals are consistent with those in the O 1s spectra. And the peak at 290.8 eV is ascribed to the -CF signal from the PVDF binder. **Fig. S9d** exhibits the Zn 2p spectra of the (2-M-AQ)-VO electrode at different states in the 1st cycle. No Zn signal is observed at the pristine state. And it is worth mentioning that the Zn 2p spectra of the (2-M-AQ)-VO electrode in the electrolyte without Cu²⁺ only exhibit the inserted Zn signals at 1022.2 (2p_{3/2}) and 1045.3 eV (2p_{1/2}) at the discharge/charge states (**Fig. S9d**), and the residual Zn signals at the fully charged state seems stronger than those in the presence of Cu²⁺, suggesting that the reversibility of the Zn²⁺ (de)intercalation in 3 M Zn(CF₃SO₃)₂ is inferior to that in the presence of Cu²⁺.

Fig. S10 XRD patterns of the (2-M-AQ)-VO electrodes in the electrolytes with and without Cu^{2+} after the cycling test at 1 A g⁻¹.

Fig. S11 (**a**, **b**) SEM images and (**c**, **d**) EDS as well as elemental of the cycled Zn anodes in the electrolytes (**b**, **d**) with and (**a**, **c**) without Cu²⁺.

S3 The effect of the Cu²⁺ additive in the electrolyte on Zn foil in the Zn//Zn symmetrical cell

In aqueous ZIBs, inhomogeneous Zn deposition during continuous Zn stripping/plating processes would consume active Zn and electrolyte irreversibly to deteriorate the cycling durability.^{17, 18} Due to the higher E^{θ} (Cu²⁺/Cu⁺) (0.159 V) than E^{θ} (Zn²⁺/Zn) (-0.763 V), Cu²⁺ is preferential to gain electrons in comparison with Zn²⁺. It is except that the Cu²⁺ additive in the electrolyte can modify the interface between Zn metal and electrolyte to prolong the cycling life of the Zn anode.

To verify the function of the Cu^{2+} cation in the electrolyte on Zn anode, the cycling performances of the Zn//Zn symmetrical cells were carried out comparatively in different electrolytes at a current density of 0.5 mA cm⁻² and an areal capacity of 0.25 mAh cm⁻². As displayed in **Fig. S12a**, the positive effect of the Cu²⁺ additive on the Zn foil can be confirmed by the cycling test at a high current density of 5 mA cm⁻² with an areal capacity of 1 mAh cm⁻². The Zn//Zn symmetrical cell displays a long lifespan of 450 h with a low plating/stripping overpotential (**Fig. S12a**, inset) in the electrolyte with Cu²⁺, which is superior to the cell in the absence of Cu²⁺ (short-circuit after 75 h). The result indicates that the Cu²⁺ ion in the electrolyte plays a remarkably important role in the cycling stability of Zn anode.

Fig. S12 (**a**) Cycling performance comparison of the Zn//Zn symmetrical cells at 5 mA cm⁻² and 1 mAh cm⁻² in different electrolytes; (**b**) XRD patterns and (**c**, **d**) SEM images of the cycled Zn foils in the electrolytes (**c**) without and (**d**) with Cu²⁺. (**e**, **f**) EDS as well as elemental mappings of the cycled Zn anodes in the electrolytes (**c**, **e**) with and without (**d**, **f**) Cu²⁺ in Zn||Zn symmetrical cell.

In order to further reveal the reason for the improved long-term durability of Zn foil in the electrolyte with Cu^{2+} , the XRD patterns and SEM images of the cycled Zn foils in the electrolytes with and without Cu^{2+} have been measured. As displayed in **Fig. S12b**. except the diffraction peaks of zinc (PDF#01-87–0713), the others peaks can be indexed to the Zn(CF₃SO₃)₂[Zn(OH)₂]₃·xH₂O phase. It is worth mentioning that the relative intensity of the Zn(CF₃SO₃)₂[Zn(OH)₂]₃·xH₂O phase is much stronger when Cu^{2+} is present in the electrolyte.

SEM images of the cycled zinc foils are shown in **Fig. S12(c, d)**. In 3M Zn(CF₃SO₃)₂, the surface of the cycled Zn appears rock-like dendrites (**Fig. S12c**), indicating the heterogeneous Zn deposition/stripping in the aqueous electrolyte. In contrast, porous

and uniform microflake arrays are covered on the surface of the cycled Zn foil in the electrolyte with Cu^{2+} (**Fig. S12d**). Therefore, during the plating/stripping process, the porous microflake arrays on the surface not only can facilitate the penetration of the electrolyte to achieve uniform Zn^{2+} flux/ nucleation, but also can protect the Zn foil from corrosion. The corresponding EDS and elemental mappings of the cycled Zn foils are shown in **Fig. S12(e, f)**. It can be seen that in the electrolyte with Cu^{2+} additive, Cu (0.24 at. %) has incorporated into the cycled Zn foil with more F (12.10 at. %) and S contents (3.49 at. %) than those in the absence of Cu^{2+} (F: 1.80 at. %; S: 0.61 at. %), agreeing with the XRD patterns and SEM images.

Fig. S13 The configuration of (a, b) the Zn²⁺ or (c, d) Cu²⁺ intercalated on the same site in the inner channel of (2-M-AQ)-VO; The magnified images of the blue squares in (b)a and (d) c.

Reference

- 1. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 3. J. Behler, J. Chem. Phys., 2011, **134**, 074106.
- D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah and L. F. Nazar, *Nat. Energy*, 2016, 1, 119.
- J. Li, K. McColl, X. Lu, S. Sathasivam, H. Dong, L. Kang, Z. Li, S. Zhao, A. G. Kafizas, R. Wang, D. J. L. Brett, P. R. Shearing, F. Corà, G. He, C. J. Carmalt and I. P. Parkin, 2020, 10, 2000058.

- C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang, M. Yan, M. Tian, M. Wang, J. Yang and G. Cao, *Energy Environ. Sci.*, 2019, **12**, 2273-2285.
- Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo, W. Zhang, C. Wang, L. Wang, J. Zhou and S. Liang, *Energy Environ. Sci.*, 2018, 11, 3157-3162.
- 8. F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi and H. N. Alshareef, *ACS Energy Lett.*, 2018, **3**, 2602-2609.
- 9. Y. Liu, X. Xiao, X. Liu, L. L. Cui and Y. Gong, J. Mater. Chem. A, 2022, 10, 912-927.
- 10. L. Hu, Z. Wu, C. Lu, F. Ye, Q. Liu and Z. Sun, *Energy Environ. Sci.*, 2021, **14**, 4095-4106.
- D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu, Y. Zhang, F. Dong, Y. Wang and Y. Xia, *Chem*, 2020, 6, 968-984.
- 12. Z. Wu, C. Lu, F. Ye, L. Zhang, L. Jiang, Q. Liu, H. Dong, Z. Sun and L. Hu, *Adv. Funct. Mater.*, 2021, **31**, 2106816.
- 13. G. Silversmit, D. Depla, H. Poelman, G. B. Marin and R. De Gryse, J. Electron. Spectrosc. Relat. Phenom., 2004, 135, 167-175.
- N. Zhang, M. Jia, Y. Dong, Y. Wang, J. Xu, Y. Liu, L. Jiao and F. Cheng, *Adv. Funct. Mater.*, 2019, 29, 1807331.
- 15. S. Zhang, W. Zhao, H. Li and Q. Xu, ChemSusChem, 2020, 13, 188-195.
- H. Jiang, W. Gong, Y. Zhang, X. Liu, M. Waqar, J. Sun, Y. Liu, X. Dong, C. Meng, Z. Pan and J. Wang, *J. Energy Chem.*, 2022, 70, 52-58.
- 17. J. Yin, X. Feng, Z. Gan, Y. Gao, Y. Cheng and X. Xu, *Energy Storage Mater.*, 2023, **54**, 623-640.
- Q. Zhang, J. Luan, Y. Tang, X. Ji and H. Wang, *Angew. Chem. Int. Ed. Engl.*, 2020, 59, 13180-13191.