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Materials and chemicals

Concentrated hydrochloric acid (HCl, 12 mol/L), acetone (CO(CH3)2, >99%), Cobalt nitrate 

hexahydrate (Co(NO3)2⋅6H2O, >99%), Chromic nitrate nonahydrate(Cr(NO3)3⋅9H2O, >99%), 

Ferric nitrate nonahydrate(Fe(NO3)3⋅9H2O, >99%) Ammonium fluoride (NH4F, >99%), urea 

(CO(NH2)2, >99%) and potassium hydroxide (KOH, >99%) were purchased from Sinopharm 

Chemical Reagent Ltd and could be used directly without further purification. Nickel foam (NF, 

1.0 mm in thickness) was served as substrates of target catalysts with pretreatment before use. 

Furthermore, sufficient ultrapure water was prepared throughout the experiments.

DFT computation details: The DFT calculations were performed using the Cambridge 

Sequential Total Energy Package (CASTEP) with the plane-wave pseudo-potential method. The 

geometrical structures of the (020) plane of Cr0.1-FeCo2P and FeCo2P was optimized by the 

generalized gradient approximation (GGA) methods. The Revised Perdew-Burke-Ernzerh of 

(RPBE) functional was used to treat the electron exchange correlation interactions. A Monkhorst 

Pack grid k-points of 5*6*1 of Cr0.1-FeCo2P and FeCo2P, a plane-wave basis set cut-off energy of 

500 eV were used for integration of the Brillouin zone. The structures were optimized for energy 

and force convergence set at 0.05 eV/A and 2.0×10−5 eV, respectively. The Gibbs free energy of H 

adsorption was calculated as follows:

ΔGH* = ΔEH* + ΔZPE – TΔS

Where ΔZPE is the zero-point energy and TΔS stands for the entropy corrections. According 

to the previous report by Norskov et al., we used the 0.24 eV for the ΔZPE - TΔS of hydrogen 
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adsorption in this work.

Res: J. Electrochem. Soc., 2005, 152, J23.

Fig. S1 EDS spectra of the Cr0.1-FeCo2P/NF material.

Fig. S2 Comparison of potentials of UOR and OER.



Fig. S3 Comparison of urea electrolysis UOR performance with previously reported 

electrocatalysts[1-5].

Fig. S4 In 1.0 M KOH + 0. 5M urea, cyclic voltammograms of a) Cr0.15-FeCo2P/NF, b) 

FeCo2P/NF, c) Cr0.1-FeCo2P/NF and d) Cr0.2-FeCo2P/NF at the different scan rates varying from 

20 to 100 mV·s-1 for UOR.



Fig. S5 XRD patterns before and after OER@Cr0.15-FeCo2P/NF after 12 h.

Fig. S6 Comparison of urea electrolysis HER performance with previously reported 

electrocatalysts[6-9].



Fig. S7 In 1.0 M KOH + 0. 5M urea, cyclic voltammograms of a) Cr0.15-FeCo2P/NF, b) 

FeCo2P/NF, c) Cr0.1-FeCo2P/NF and d) Cr0.2-FeCo2P/NF at the different scan rates varying from 

20 to 100 mV·s-1 for HER.



Fig. S8 XRD patterns before and after HER@Cr0.1-FeCo2P/NF after 12 h.

Fig. S9 XRD diagram of Cr0.15-FeCo2P/NF//Cr0.1-FeCo2P/NF before and after 12 h for overall 

urea electrolysis, anode (a) and cathode (b).



Fig. S10 The partial density of states, (a) Co , (b) Cr, (c) Fe and (b) P for the Cr-FeCo2P-Cr1-Site; (e) 

Co , (f) Cr, (g) Fe and (h) P for the Cr-FeCo2P-Cr2-Site.



Fig. S11 The partial density of states, (a) Co , (b) Fe and (c) P for the FeCo2P-Fe1-Site ; (d) Co , (e) 

Fe and (f) P for the FeCo2P-Fe2-Site.



Table S1 the molar amount of every atom for the Cr0.1-FeCo2P/NF catalyst.

Element Mass fraction % Atomic fraction %

Co 3.13 8.49

Cr 0.32 0.62

Fe 0.89 2.75

P 20.96 16.34

O 58.07 54.22

C 14.04 16.04
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