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S1 Motivation for time series filtering 

The measurement 𝑦𝑘,𝑡  at time 𝑡 for time series 𝑦𝑘  is the sum of the true value 𝛼𝑘,𝑡  and the 

measurement error  𝜀𝑘,𝑡 . These measurement errors comprise sampling from the chamber 

(𝜀𝑘𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔,𝑡), error related to the estimation of particles and gases losses to chamber walls 

(𝜀𝑘𝑤𝑎𝑙𝑙−𝑙𝑜𝑠𝑠,𝑡), and error related to processing of measurement instrument data from raw data 

into more useful form (𝜀𝑘𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑡).  

Measurements 𝑦𝑘,𝑡 were presented as 

𝑦𝑘,𝑡 = 𝛼𝑘,𝑡 + 𝜀𝑘,𝑡 (A.1) 

𝜀𝑘,𝑡 = 𝜀𝑘𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔,𝑡 + 𝜀𝑘𝑤𝑎𝑙𝑙−𝑙𝑜𝑠𝑠,𝑡 + 𝜀𝑘𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑡 (𝐴. 2) 

where the error term 𝜀𝑘,𝑡 is independent in time and follows a specified distribution presenting 

all uncertainties. The state 𝛼𝑘,𝑡 describes the estimate of the real state of the variable in the 

chamber and the error term 𝜀𝑘,𝑡 represents the error related to the estimation of the state. 

Understanding the evolution of the state 𝛼𝑘,𝑡  of the variable is the question of interest. We 

would like to understand the factors affecting the change of state during the aging of emissions. 

Therefore, we estimated the state 𝛼𝑘,𝑡 from measurements 𝑦𝑘,𝑡 for each variable. 

 

S2 Methods for simulation studies 

Two simulated data sets (see Table 1 in the main text) were formed to study how model would 

perform in a situation where we know the correct evolution and structure. Both data sets were 

formed using R-package deSolve (Soetaert et al., 2010). Data sets describe the evolution of 

Ordinary Differential Equation (ODE) system which length is 100. The difference between data 

sets is the way how differential equations of variables are linked to each other. In smaller data 

sets, differential equations are following the Laws of Mass Action, applied in R-package 
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episode (Mikkelsen, 2017; Seinfeld and Pandis, 2016, see Table S1 for coefficients used in the 

system). In larger data set, equations have been formed independently for each variable, using 

pre-defined causal structure for variables (see Table S2 for coefficients used in the system. We 

called these data sets as simulated data sets throughout the text. 

Table S1 Coefficients for smaller simulated dataset. 
 

Δ(𝑥) 
 

Predictor Coefficient 

V2 V1+V3 0.021 

V1 V2 0.0225 

V4 V2 0.0225 

V1 V2+V4 0.015 

V5 V2+V3 0.02 

V2 V5 0.01 

V4 V5 0.01 

V6 V2+V5 0.02 

V2 V6 0.03 

V5 V6 0.03 

V7 V6 0.015 

V7 V2+V8 0.02 

V2 V7 0.03 

V8 V7 0.03 

V3 V4 0.015 

 

Table S2 Coefficients for larger simulated dataset. 

Gases    Particle chemical composition 

Δ(𝑥) Predictor Coefficient Δ(𝑥) Predictor Coefficient 

NO2 NO2*NuclM -2.30E-08  NO3 NO3*O3 8.15E-04 

O3 PTR3 1.59E-03  NO3 NO3*AitM -1.33E-07 

O3 O3*PTR1 4.19E-04  NO3 NO3*NuclM -4.67E-08 

O3 O3*NuclM -7.85E-07  NO3 NO3*CoarseM -4.21E-08 

O3 O3*CoarseM -1.22E-07  NO3 AitM*O3 1.52E-08 

O3 NuclM*PTR3 1.06E-07  NO3 AitM 1.37E-10 

O3 PTR1*CoarseM 4.90E-08  NO3 AitM*CoarseM 1.19E-12 
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OH PTR2*OH -2.44E-02  POA1 AitM*POA1 -1.58E-08 

PTR1 PTR1 -6.59E-03  POA2 POA2 9.55E-02 

PTR1 PTR3*PTR1 3.00E-05  POA2 PTR1*POA2 -1.20E-02 

PTR1 PTR1*NuclM -1.08E-07  POA2 POA2*O3 1.34E-03 

PTR1 NuclM 1.42E-08  POA2 AitM 5.99E-07 

PTR1 CoarseM*PTR1 -6.58E-09  POA2 AitM*POA2 -5.06E-08 

PTR1 PTR3*NuclM 1.31E-09  SOA1 O3*SOA1 -7.46E-05 

PTR1 NuclM*CoarseM 2.45E-12  SOA1 NuclM*SOA1 1.25E-07 

PTR2 PTR2 5.86E-03  SOA2 O3 2.81E-02 

PTR2 AitM*PTR2 -1.17E-08  SOA2 POA2*SOA2 -1.57E-03 

PTR3 PTR3 -1.22E-03  SOA2 SOA2*O3 -8.86E-04 

PTR3 PTR3*PTR2 6.09E-05  SOA2 SOA2 3.40E-04 

PTR3 PTR3*CoarseM 2.05E-09  SOA2 NuclM*SOA2 -7.10E-08 

    SOA3 SOA2*POA2 6.42E-04 

Particle size   SOA3 SOA2*SOA1 4.16E-04 

Δ(x) Predictor Coefficient SOA3 SOA3 -1.49E-04 

AccM AccM*PTR3 -1.03E-05  SOA3 SOA3*SOA2 1.26E-05 

AccM NuclM*CoarseM 9.83E-07  SOA3 NuclM*SOA3 -1.76E-07 

AccM NuclM*AccM -1.26E-07     

AccM AccM*CoarseM -1.03E-08     

AitM AitM 4.39E-02     

AitM PTR3*AitM -2.23E-04     

AitM AitM*AccM 6.12E-09     

CoarseM AccM*NO2 8.82E-06     

CoarseM NuclM*CoarseM -7.89E-08     

CoarseM AitM*CoarseM -5.05E-08     

CoarseM AitM*AccM 1.36E-08     

NuclM NuclM -2.02E-03     

NuclM NuclM*CoarseM 1.77E-07     

NuclM AccM*NuclM -5.19E-08     
 

Several questions of interest existed related to the properties of input data set and data 

pretreatment (Table S3). Firstly, we were interested to study how the precision of the 

measurements by analytical instrumentation is related to the model fit, which is assessed by 
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using different proportions of random noise mimicking the measurement error and the number 

of measurements made in time. To mimic the measurement error, normally distributed random 

noise was added to the variables. The standard deviation of the added random noise have been 

proportional to the standard deviation of the simulated variables due to evolution process. The 

proportion of the standard deviation of the random noise have been called fraction of added 

uncertainty. The number of measurements during the same evolution length (100) was altered 

to be between 26 and 401. 

Secondly, we were interested to know whether the methods we applied to increase the quality 

of data are increasing the quality of the fit, i.e. accuracy of fit and obtained causal structure. 

Does filtering or smoothing of time series improve the fit and accuracy of prediction and is 

there an optimal time resolution to which data should be averaged?  

Thirdly, the amount of necessary prior information was the question of interest. We were 

interested to study the importance of prior information given to a causal discovery algorithm to 

the modeled structure. Does addition of prior information improve the accuracy of modeled 

structure and how much prior information is necessary to get a reasonably good fit for the 

model. 

The question about necessity of the prior information is also related to the dependence of model 

fit and the correctness of the structure. Intuitively, one might think that the correct structure 

would produce the best fit for the evolution. As many of the variables are highly dependent, it 

is probable that we will fail to obtain the exactly correct structure between variables. In addition 

to the differences between obtained and real structure in the model, we are interested about the 

predictive value of the obtained model compared to the simulated evolution. If dependent 

variables which we use in the model to explain the evolution are correlated with real causes in 

the data set, the model might still be able to predict the evolution of emission in the chamber.  

Table S3 Simulated experiments to study the model performance. Aim of simulation studies is to 

investigate how different parameters affect model capability to return correct structure and 

goodness of fit. 
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 How test was performed Purpose of the test 

Measurement fre-

quency (Table S4 

and S5) 

Reducing or increasing number of simu-

lated 'measurement' points in given time 

(100). Frequency of 1/4,1/2,1,2,4 time 

points was used. This means dataset has 

401, 201, 101, 51 and 26 measurement 

points during time simulation time 0-

100. 

To see whether increasing or decreas-

ing measurement frequency would 

help making model better. Increasing 

of points with same measurement 

noise would lead to lower sig-

nal/noise ratio? 

Measurement uncer-

tainty (Table S4 and 

S5) 

Adding normally distributed random 

noise to the simulated evolution. This 

random noise was representing the 

possible measurement uncertainty. 

Purpose was to see if the measure-

ment uncertainty reduces both struc-

tural accuracy and fit accuracy. 

Filtering and smooth-

ing (Figure S1) 

Applied filtering and smoothing to origi-

nal variables of simulated dataset. 

How filtering or smoothing would 

improve the fit and structure of the 

model? Is it reasonable to use filtering 

or smoothing of dataset before mak-

ing a model? 

Prior Information 

(Table S6 and S7) 

Using prior information about the edges 

possible in the model. Using both correct 

and incorrect prior information. Fraction 

of information from all correct prior in-

formation was used as a measure of in-

formation. 

Does addition of prior information 

help model to get correct structure 

and good fit? 

 

Accuracy tests for causal discovery algorithms have been performed earlier (Scheines and 

Ramsey, 2016; Singh et al., 2017). However, those tests are dependent on the used data set. In 

our case, variables that explain the evolution of some variable do not originate directly from 

the discovery algorithm. Our situation differs from the tests performed earlier as the variables 

from the algorithm are used to form possible interaction variables, not directly to explain the 

evolution. 
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We measured the performance of the model in simulated data set by two ways. First is the 

accuracy of the model fit to the simulated data set: how well the model can capture simulated 

evolution and how well the model can predict the simulated evolution after fitted data set. 

Second can be called as structural accuracy: how well the underlying causal structure of 

variables can be returned by the model. 

For measuring accuracy of the model fit, we compared the evolution obtained from the model 

to measurements. Evolution was then compared to true evolution, not including the error added 

to the simulations, using Root Mean Squared Error (RMSE) for each time series. To equally 

weight each time series when calculating RMSE, each time series were scaled by dividing those 

with its standard deviation before calculating RMSE. In further text, we refer to this scaled 

version as RMSE. 

In addition to the accuracy of the model, we also evaluated the predictive accuracy of the model. 

We used the obtained coefficients from the model to predict further time steps of the evolution 

of the system. Then we compared the prediction to the same time steps from the real system 

and evaluate the accuracy of model prediction using RMSE. Prediction length was 30% of the 

simulated data set used to fit a model.  

For measuring structural accuracy, we used adjacency precision (AP), adjacency recall (AR) 

(Scheines and Ramsey, 2016) and F-score (Singh et al., 2017). AP was defined as a fraction of 

correct edges in the model of all proposed edges. AR was defined as a fraction of correct edges 

in the model of all correct edges. F-score was defined based on AP and AR as 

𝐹𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝐴𝑃∗𝐴𝑅

𝐴𝑃+𝐴𝑅
 .  

In addition to F-score, we wanted to study whether incorrect predictors for variables were close 

to correct causes and whether the model could find a good replacement for each correct 

predictor that was not chosen for modeled structure. Correlation was used to measure closeness 

here. For each correct predictor we calculated correlation between it and each predictor in the 

model (for sameΔ(𝑥)). The maximum of these correlations was taken as the value for that 
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predictor. This results that if the correct predictor was in the model, correlation was 1. In the 

results section we have calculated the mean value of correlations for all the predictors. 

S3 Results of simulation studies 

As expected, the model fit to the data was better when the error assigned on it was lower. The 

effect of measurement error is reported for simulated data sets (Tables S4 and S5). The effect 

of uncertainty was small for F-score and correlation between the correct edges and edges in the 

model. This was expected, as the error makes the data set noisier. Furthermore, as the 

simulations also studied the effect of time resolution in measurements, in both data sets the 

optimal number of measurements during one experiment was related to the amount of error 

applied (Tables S4 and S5). For lower error, higher time resolution leads to better results when 

the real change between subsequent time points was dominating the change observed and if 

many observations about the evolution process were available. In case of high error, fewer 

observations from the phenomenon were preferred, as the signal to noise ratio was low and 

increasing the number of observations would make it even lower. However, the dependence 

between sample size and fraction of error was weak. This is still opposite of what is expected 

and could be due to a small sample size.  

We found that in some cases, there were unstabilities in computations. These can be seen as 

large numbers of RMSE in the tables S4 and S5. These are resulted by some variable that gets 

large values in the differential equation system, resulting the system to be unstable. We haven’t 

been studied the exact reason for the unstability. This could be due to the inaccurate estimation 

of the structure, i.e. some incorrect edge in the model results a dependence that is having “large” 

coefficient, and that differential equation would result system to be unstable. Other option is 

that the estimate itself is overestimated, i.e., due to low number of points or inaccuracies in the 

measured differences that are modeled. 
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Table S4 Effect of measurement frequency and fraction of error to goodness of fit param-

eters of the model for larger simulated dataset. Variable 'Fraction of added uncertainty' is 

a standard deviation of random noise added to simulation data (sd of each time series is 

adjusted to 1). Number of edges is the number of edges in the model, RMSE is Root Mean 

Squared Error, F-score is a measure of structural accuracy, based on a number of correct 

and incorrect edges, see S1 for more information. Mean correlation is mean correlation 

between proposed and correct predictor variable. For each row, number of replications is 

10. For number of observations = 401, and fraction of added uncertainty = 0.5, there is 

2/10 cases, when some unstabilities result large values for RMSE. 

Number of 
observations  

Fraction of 
added 

uncertainty  

Mean num-
ber of edges 

in the 
model 

Mean of 
RMSE 

Mean of RMSE 
for prediction 

Mean of 
Fscore 

Mean correla-
tion of correct 
predictor and 
selected pre-

dictor 

26  0.01  35.9 17.07 12.86 0.22 0.88 

51  0.01  46.2 17.47 16.2 0.22 0.88 

101  0.01  41.1 19.43 18.13 0.22 0.87 

201  0.01  39.1 23 20.63 0.2 0.86 

401  0.01  28 24.46 17.85 0.21 0.83 

26  0.05  30 19.97 16.51 0.19 0.82 

51  0.05  29.9 19.77 20.07 0.17 0.84 

101  0.05  29.5 17.05 19.03 0.19 0.89 

201  0.05  27.4 19.84 22.21 0.19 0.92 

401  0.05  24.5 23.61 20.71 0.18 0.93 

26  0.1  25.9 19.96 15.68 0.17 0.86 

51  0.1  28.9 18.91 19.51 0.2 0.93 

101  0.1  28 21.24 21.56 0.19 0.93 

201  0.1  22.4 28.06 35.83 0.18 0.92 

401  0.1  19.8 33.86 22.49 0.18 0.91 

26  0.5  33.7 31.17 25.76 0.19 0.93 

51  0.5  28.3 47.12 31.35 0.19 0.92 

101  0.5  41.1 1757.27 38.03 0.22 0.94 

201  0.5  44.3 344.31 42.27 0.23 0.94 

401  0.5  46.1 2.19841E+18 71.84 0.23 0.93 
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Table S5 Effect of number of observations and fraction added uncertainty to goodness of 

fit parameters of the model in smaller simulated dataset. Variable 'Fraction of added un-

certainty' is a standard deviation of random noise added to simulation data (sd of each 

time series is adjusted to 1). Number of edges is the number of edges in the model, RMSE 

is Root Mean Squared Error, F-score is a measure of structural accuracy, based on a 

number of correct and incorrect edges, see S1 for more information. Mean correlation is 

mean correlation between proposed and correct predictor variable. For each row, number 

of replications is 10. For number of observations = 401, and fraction of added uncertainty 

= 0.5, there is 1/10 cases, when some unstabilities result large values for RMSE. 

Number of 
observations  

Fraction of 
added 

uncertainty  

Mean num-
ber of edges 

in the 
model 

Mean of 
RMSE 

Mean of RMSE 
for prediction 

Mean of 
Fscore 

Mean correla-
tion of correct 
predictor and 
selected pre-

dictor 

26  0.01  15.3 7.76 4.5 0.22 0.85 

51  0.01  17.7 5.88 4.16 0.23 0.87 

101  0.01  22.5 4.64 3.67 0.21 0.81 

201  0.01  22.5 4.02 3.71 0.21 0.75 

401  0.01  18.4 6.68 4.07 0.26 0.81 

26  0.05  12.6 8.79 4.71 0.13 0.75 

51  0.05  14.1 8.93 3.89 0.2 0.79 

101  0.05  16.8 7.89 3.33 0.25 0.81 

201  0.05  13.8 10.83 2.85 0.19 0.8 

401  0.05  11.5 17.93 3.9 0.24 0.8 

26  0.1  10.1 9.91 3.59 0.17 0.77 

51  0.1  10.6 10.99 2.92 0.24 0.78 

101  0.1  11.3 15.23 4.35 0.24 0.79 

201  0.1  9.8 22.61 8.1 0.31 0.68 

401  0.1  7.4 32.08 11.81 0.32 0.63 

26  0.5  5.6 31.64 12.85 0.23 0.61 

51  0.5  5 40.16 21.21 0.23 0.59 

101  0.5  6 47.46 29.68 0.22 0.63 

201  0.5  6.4 51.29 36.34 0.23 0.65 

401  0.5  8.2 2.49773E+17 795977.48 0.26 0.76 
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Filtering or smoothing of the time series representing measurements reduces the error, 

especially when measurement uncertainty was high (Figure S1). These methods were also 

improving the accuracy of model prediction. To understand importance of applying smoothing 

or filtering method in a real data set, we need to understand whether the error in the real data 

set is large enough that applying filtering or smoothing method is reasonable. We assume the 

error related to the time series as the difference between these data sets. The standard deviation 

of the error was then compared to the standard deviation of the filtered data set to estimate the 

fraction of the error of the whole standard deviation in the time series. 

 

Figure S1 Effect of filtering and smoothing to the goodness of fit parameters. Method 

‘Original’ means that time series is used without filtering or smoothing. In automatic and 

manual filtering, filter have been applied by selecting length of the filtering window by 

cross-validation (automatic) or by manual selection. Window length in smoothing have 

been chosen by cross-validation. Variable 'Fraction of added uncertainty' is a standard 
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deviation of random noise added to simulation data (standard deviation of each time se-

ries is adjusted to 1), see S1 for more information. Number of edges is the number of edges 

in the model, RMSE is Root Mean Squared Error, F-score is a measure of structural ac-

curacy, based on number of correct and incorrect edges, see S1 for more information. 

Mean correlation is mean correlation between proposed and correct predictor variable. 

There is some additional points that are outside of the figure and are due to some unsta-

bilities in the fit. For RMSE, there is one larger value for smoothing, two larger values for 

manual filtering and two for original time series, all with fraction of added uncertainty of 

1. For predicted RMSE, there is one larger value for smoothed, uncertainty 0.1, three for 

manually filtered, with uncertainties 0.3, 0.3, and 1, and one for automatically filtered, 

with uncertainty 0.5. 

In Aerosol Mass Spectrometer (AMS) and Proton-Transfer-Reactor Time-of-Flight Mass 

Spectrometer (PTR-ToF-MS) data sets and in coarse size bin (>300nm) of Scanning Mobility 

Particle Sizer (SMPS) measurements, the fraction of standard deviation of error was around 10-

20% of the whole standard deviation. Variables measured by gas analyzers contained the least 

amount of error, approximately 1-5% of the standard deviation of filtered time series. However, 

because the fraction of error of some variables is high, applying of the filtering methods to real 

data set was reasonable.   

Reasons why applying the filtering methods to the data set is not improving the fit before the 

error is relatively high could be assessed further but is not on the scope of this study. In addition 

to the fraction of error, the sample size is probably related to the necessity of the filtering 

method. These simulations for the larger data set were performed using the sample size of 100, 

which is the same sample size that was used in the shortest experiment. 

Fourthly, prior information was closely related especially to the correctness of the obtained 

dependence structure between variables in the data set. In some situations, there might be large 

amounts of prior information from previous studies available, which might help to construct 

the structure based on prior knowledge. This means that the correctness of the structure is high, 

and the causal inference based on the structure and the observed data set has higher quality.  
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From wood combustion emission experiments, we do not have much prior knowledge about 

the phenomenon. Even though there has been and currently is a vast amount of research about 

the oxidative aging of combustion emissions, the number of possible reactions occurring during 

experiments is very high and the reaction coefficients are therefore hard to estimate. Thus, the 

construction of the complete causal structure between variables might be out of reach based on 

low amount of prior information.  

One question of interest is that how the incorrect edges in the structure are related to the missing 

or present correct edges. Based on the nature of the causal discovery algorithm one might think 

that the algorithm is not able to separate between causal and non-causal associations. Therefore, 

it might be that in the model the real cause is replaced with an indicative one. This decreases 

the accuracy of the structure, but not necessarily affect the fit or accuracy of prediction of the 

model. Especially if the dependence between a real and an indicative cause is strong. Decreased 

accuracy in the structure may produce incorrect interpretations of the causal effects. 

We found that there is a small difference in both goodness of fit and structure accuracy 

parameters when the number of correct and incorrect edges in prior information is varied in the 

smaller, artificial data set. Larger amount of correct prior information led to slightly lower 

RMSE for the model and prediction (Table S6). Addition of correct prior information led to 

lower RMSE and higher F-score. For prediction, the information had not much effect. Incorrect 

prior information didn’t affect the prediction accuracy, nor the F-score as would have been 

expected. F-score was even higher when there was more incorrect information available (Table 

S7). This indicates that the prior information is not optimally used in the current version of the 

model and should be handled better in the future. 
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Table S6 Effect of correct prior information for the goodness of fit parameters of the 

model in smaller simulated dataset. Fractions of correct and incorrect information 

about dependencies are X -> Y dependencies given as a prior information for causal dis-

covery algorithm. Variable 'Fraction of added uncertainty' is a standard deviation of 

random noise added to simulation data (standard deviation of each time series is ad-

justed to 1). Number of edges is the number of edges in the model, RMSE is Root Mean 

Squared Error, F-score is a measure of structural accuracy, based on a number of cor-

rect and incorrect edges, see S1 for more information. Mean correlation is mean corre-

lation between proposed and correct predictor variable. For each row, number of repli-

cations is 10, number of observations is 101, and fraction of added uncertainty is 0.5. 

Fraction of 
correct in-
formation 
about de-

pendencies 

Fraction of 
correct info 
about non-
dependen-

cies 

Fraction of 
incorrect 

info about 
dependen-

cies 

Fraction of 
incorrect 

info about 
non-de-

pendencies 

Mean 
number 
of edges 

in the 
model 

Mean 
of 

RMSE 

Mean of 
RMSE for 

prediction 

Mean 
of 

Fscore 

Mean cor-
relation of 

correct 
predictor 

and se-
lected pre-

dictor 

0.05 0.05 0 0 10.4 15.85 4.98 0.2 0.79 

0.3 0.05 0 0 22.1 8.99 4.85 0.36 0.87 

0.5 0.05 0 0 31.2 7.62 4.74 0.44 0.9 

0.05 0.3 0 0 11 15.36 4.95 0.23 0.8 

0.3 0.3 0 0 20.7 12.31 4.83 0.36 0.83 

0.5 0.3 0 0 30.9 7.07 4.54 0.43 0.9 

0.05 0.5 0 0 10.8 14.55 4.93 0.23 0.8 

0.3 0.5 0 0 22 6.73 5.2 0.38 0.88 

0.5 0.5 0 0 32.3 5.19 5.33 0.48 0.93 
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Table S7 Effect of incorrect prior information for the goodness of fit parameters of the 

model in smaller simulated dataset. Fractions of correct and incorrect information 

about dependencies are X -> Y dependencies given as a prior information for causal dis-

covery algorithm. Variable 'Fraction of added uncertainty' is a standard deviation of 

random noise added to simulation data (standard deviation of each time series is ad-

justed to 1). Number of edges is the number of edges in the model, RMSE is Root Mean 

Squared Error, F-score is a measure of structural accuracy, based on a number of cor-

rect and incorrect edges, see S1 for more information. Mean correlation is mean corre-

lation between proposed and correct predictor variable. For each row, number of repli-

cations is 10, number of observations is 101, and fraction of added uncertainty is 0.5. 

Fraction of 
correct in-
formation 
about de-

pendencies 

Fraction of 
correct info 
about non-
dependen-

cies 

Fraction of 
incorrect 

info about 
dependen-

cies 

Fraction of 
incorrect 

info about 
non-de-

pendencies 

Mean 
number 
of edges 

in the 
model 

Mean 
of 

RMSE 

Mean of 
RMSE for 

prediction 

Mean 
of 

Fscore 

Mean cor-
relation of 

correct 
predictor 

and se-
lected pre-

dictor 

0.3 0.3 0 0 20.7 12.31 4.83 0.36 0.83 

0.3 0.3 0.3 0 32.5 6.2 5.07 0.45 0.9 

0.3 0.3 0.5 0 41.9 2.23 5.15 0.51 0.95 

0.3 0.3 0 0.3 21.1 9.14 4.59 0.38 0.87 

0.3 0.3 0.3 0.3 33 5.51 5.61 0.49 0.91 

0.3 0.3 0.5 0.3 44.6 3.16 5.96 0.5 0.95 

0.3 0.3 0 0.5 22 10.5 4.62 0.4 0.86 

0.3 0.3 0.3 0.5 32.7 5.34 5.09 0.48 0.92 

0.3 0.3 0.5 0.5 44.2 2.43 4.6 0.51 0.95 

 

S4 Additional information about the models for wood combustion experiments 

Related to wood combustion experiments, evolution of variables that are not represented in the 

main text are represented in Figures S2-S7. Figures S2-S4 show the evolution in dark aging 

experiments and Figures S5-S7 in photochemical aging experiments. Tables S8 and S9 provide 

estimated coefficients used to describe evolution in dark and photochemical aging experiments. 
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Figure S2 Evolution of size distribution variables in dark aging experiments. Size distri-

bution (Nucleation mode (NuclM, < 25 nm) and Aitken mode (AitM, 25-100 nm)) are from 



S18 

 

Scanning Mobility Particle Sizer (SMPS) measurements. Black points represent the fil-

tered version of variable and the blue line shows the modeled evolution. 

 

Figure S3 Evolution of nitrate (NO3) signatured aerosol, primary organic aerosol (POA) 

factors 1-2, and secondary organic aerosol (SOA) factor 3 in dark aging experiments. All 

variables are from Aerosol Mass Spectrometer (AMS) measurements. POA factors are 

representing 1) biomass-burning OA and 2) hydrocarbon-like OA and SOA3 is repre-

senting formation by OH radicals. Black points represent the filtered version of variable 
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and the blue line shows the modeled evolution. 

 



S20 

 

Figure S4 Evolution of gas variables (NO2, O3, and PTR factors 1-3) in dark aging exper-

iments. NO2 and O3 are from gas analyzers and PTR factors are from Proton-Transfer-

Reactor Time-of-Flight Mass Spectrometer (PTR-ToF-MS). PTR factors are representing 

1) primary VOCs, 2) photochemical aging products, and 3) dark aging products. Black 

points represent the filtered version of variable and the blue line shows the modeled evo-

lution.  

Figure S5 Evolution of size distribution variables in photochemical aging experiments. 

Size distribution (Nucleation mode (NuclM, < 25 nm) and Aitken mode (AitM, 25-100 
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nm)) are from Scanning Mobility Particle Sizer (SMPS) measurements. Black points rep-

resent the filtered version of variable and the blue line shows the modeled evolution. 
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Figure S6 Evolution of nitrate (NO3) signatured aerosol, primary organic aerosol (POA) 

factors 1-2, and secondary organic aerosol (SOA) factors 1-2 in photochemical aging ex-

periments. All variables are from Aerosol Mass Spectrometer (AMS) measurements. POA 

factors are representing 1) biomass-burning OA and 2) hydrocarbon-like OA and SOA 

factors are representing 1) formation by ozonolysis and 2) formation by nitrate/peroxy 

radicals. Black points represent the filtered version of variable and the blue line shows 
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the modeled evolution. 
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Figure S7 Evolution of gas variables (NO, NO2, O3, OH, PTR1, and PTR2) in photochem-

ical aging experiments. NO, NO2 and O3 are from gas analyzers. OH (derived from d9-

butanol measurements), PTR1, and PTR2 are from Proton-Transfer-Reactor Time-of-

Flight Mass Spectrometer (PTR-ToF-MS). PTR factors are representing 1) primary 

VOCs and 2) photochemical aging products. Black points represent the filtered version of 

variable and the blue line shows the modeled evolution. 

Table S8 Coefficients for dark aging experiments. 𝚫(𝒙) is the variable which its 

predictors are affecting. Estimate is the coefficient for the linear differential 

equation (1) in the main text. Gases (NO, NO2, O3) are measured by gas 

analyzers and PTR factors (PTR1-3) are from Proton-Transfer-Reactor Time-

of-Flight Mass Spectrometer (PTR-ToF-MS) measurements. Particle chemical 

composition, nitrate (NO3) signatured aerosol and primary and secondary 

organic aerosol factors (POA1-2, SOA1-3) are derived from Aerosol Mass 

Spectrometer (AMS) measurements. Particle size distribution variables are 

representing typical aerosol modes, nucleation (NuclM, < 25 nm), Aitken (AitM, 

25-100 nm), accumulation (AccM, 100-300 nm), and coarse (CoarseM, > 300 

nm). Size distribution variables are derived from Scanning Mobility Particle 

Sizer (SMPS) measurements. 

Gases       

Δ(𝑥) Predictor Estimate  Δ(𝑥) Predictor Estimate 

NO2 NO2 -0.0515  PTR1 PTR1*PTR2 0.000213 

NO2 O3*NO2 -0.00078  PTR1 PTR3*PTR1 -7.7E-05 

NO2 PTR3*O3 0.00026  PTR1 PTR3*O3 7.22E-05 

NO2 PTR3*NO2 0.00014  PTR1 PTR1 -6.7E-06 

O3 O3 0.00664  PTR2 PTR2 0.00387 

O3 NO2*O3 0.00541  PTR2 O3 0.000744 

O3 O3*PTR3 -0.00249  PTR2 O3*PTR2 -0.00013 

O3 O3*PTR2 -0.00066  PTR2 PTR1*PTR2 -1.7E-05 

O3 NO2*PTR3 0.000569  PTR3 PTR2 0.0126 

PTR1 PTR1*O3 -0.00111  PTR3 PTR3 -0.00037 

PTR1 PTR2*O3 0.000436  PTR3 PTR3*PTR2 -3.8E-05 

       

Particle chemical composition     

Δ(𝑥) Predictor Estimate  Δ(𝑥) Predictor Estimate 

NO3 NO3 0.0656  POA2 NO2*POA2 -0.00515 
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NO3 POA2 0.0231  SOA1 SOA1 0.0352 

NO3 POA2*NO3 -0.00673  SOA1 NO3*SOA1 0.00939 

NO3 SOA2 0.00465  SOA1 SOA2*SOA1 -0.00405 

NO3 SOA2*NO3 -0.00226  SOA1 O3*SOA1 -0.00164 

NO3 NO3*POA1 -0.00212  SOA1 PTR2*SOA1 0.000556 

NO3 POA1 0.000713  SOA1 O3*PTR2 5.62E-05 

NO3 POA1*SOA2 0.000185  SOA2 SOA2 -0.0618 

NO3 POA2*SOA2 -4.2E-07  SOA2 SOA2*O3 -0.0035 

POA1 POA1 0.0327  SOA2 NO2*SOA2 0.00215 

POA1 SOA1*POA1 0.00114  SOA2 NO2*O3 0.000308 

POA1 NO2*POA1 -0.00062  SOA3 SOA3 -0.0497 

POA2 POA2 0.0577  SOA3 SOA3*O3 0.00216 

POA2 NO3*POA2 0.0128  SOA3 NO3 0.00145 

POA2 O3*POA2 0.00553  SOA3 NO3*SOA3 -0.00029 

       

Particle size      

Δ(𝑥) Predictor Estimate  Δ(𝑥) Predictor Estimate 

AccM AccM -0.0027  CoarseM AitM*AccM 2.99E-09 

AccM AccM*AitM 1.26E-08  CoarseM AccM*CoarseM 2.94E-09 

AccM AccM*CoarseM -1.2E-08  CoarseM NuclM*CoarseM -2E-09 

AitM AitM -0.0124  CoarseM AitM*CoarseM 3.71E-10 

AitM AccM 0.00142  NuclM NuclM 0.0197 

AitM CoarseM*AitM -4.1E-08  NuclM AitM 0.00214 

AitM AitM*AccM 5.8E-09  NuclM NuclM*CoarseM -9.6E-08 

CoarseM CoarseM -0.00573  NuclM AitM*NuclM -7.6E-08 
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Table S9 Coefficients for photochemical aging experiments. is the variable 

which its predictors are affecting. Estimate is the coefficient for the linear 

differen-tial equation (1) in the main text. Gases (NO, NO2, O3) are measured 

by gas analyzers and PTR factors (PTR1-3) are from Proton-Transfer-Reactor 

Time-of-Flight Mass Spectrometer (PTR-ToF-MS) measurements. Particle 

chemical composition, nitrate (NO3) signatured aerosol and primary and 

secondary organic aerosol factors (POA1-2, SOA1-3) are derived from Aerosol 

Mass Spectrometer (AMS) measurements. Particle size distribution variables 

are representing typical aerosol modes, nucleation (NuclM, < 25 nm), Aitken 

(AitM, 25-100 nm), accumulation (AccM, 100-300 nm), and coarse (CoarseM, 

> 300 nm). Size distribution variables are derived from Scanning Mobility 

Particle Sizer (SMPS) measurements. 

Gases       

Δ(𝑥) Predictor Estimate  Δ(𝑥) Predictor Estimate 

NO NO -0.0199  OH PTR3*OH -0.00055 

NO OH 2.26E-07  PTR1 PTR1 0.0533 

NO NO*OH -1.6E-08  PTR1 PTR1*O3 -0.00189 

NO2 NO2 0.0156  PTR1 PTR2*PTR1 0.000357 

NO2 O3*NO2 -0.00036  PTR1 PTR2*O3 0.000121 

NO2 OH*O3 6.25E-09  PTR1 PTR2 -8E-05 

NO2 OH*NO2 -4E-09  PTR1 OH 3.43E-08 

O3 PTR1 0.0969  PTR1 PTR1*OH -6E-09 

O3 O3 -0.0149  PTR2 PTR2 -0.0185 

O3 PTR1*O3 0.000421  PTR2 O3 0.00312 

O3 OH 1.08E-07  PTR2 O3*PTR2 0.000178 

O3 OH*O3 -7.5E-09  PTR2 OH 2.64E-08 

O3 OH*PTR1 6.92E-09  PTR2 OH*PTR2 9.9E-10 

OH PTR3 349  PTR2 OH*O3 9.25E-10 

OH PTR3*PTR1 28.9  PTR3 O3 0.0869 

OH PTR3*PTR2 4.11  PTR3 PTR3 0.0107 

OH OH 0.0303  PTR3 O3*PTR3 -0.00058 

OH PTR1*OH 0.00388  PTR3 PTR3*OH -7.3E-10 

OH PTR2*OH -0.00094     

       

Particle chemical composition     

Δ(𝑥) Predictor Estimate  Δ(𝑥) Predictor Estimate 
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NO3 O3 0.00231  SOA1 PTR1*SOA1 0.0034 

NO3 NO3 -0.00155  SOA1 O3*SOA1 -0.00149 

NO3 O3*NO3 -0.00044  SOA1 O3*PTR1 0.000707 

NO3 OH*NO3 4.23E-10  SOA1 SOA1*OH 2.9E-09 

NO3 OH*O3 5.68E-11  SOA1 SOA2*OH 7.59E-10 

POA1 POA1*NO3 -0.0148  SOA2 SOA2 0.054 

POA1 POA1*PTR1 0.00705  SOA2 O3*SOA2 -0.00138 

POA1 POA1 -0.00475  SOA2 PTR2*SOA2 -0.00042 

POA1 OH*POA1 -1.4E-08  SOA2 OH 4.18E-08 

POA1 OH*PTR1 2.47E-09  SOA2 SOA2*OH -3.3E-09 

POA2 NO3 0.0137  SOA3 NO3*SOA3 -0.0358 

POA2 POA2 -0.0091  SOA3 O3 0.0275 

POA2 POA2*POA1 -0.0091  SOA3 PTR1*SOA3 0.0118 

POA2 NO3*POA2 0.00171  SOA3 O3*SOA3 -0.00026 

POA2 POA2*OH -2E-09  SOA3 PTR1*O3 -3.2E-05 

SOA1 SOA2*SOA1 -0.0078  SOA3 SOA3*OH 2.31E-09 

       

Particle size      

Δ(𝑥) Predictor Estimate  Δ(𝑥) Predictor Estimate 

AccM CoarseM 0.216  AitM AitM*NuclM -5.3E-09 

AccM AccM -0.0477  CoarseM CoarseM -0.00544 

AccM AitM 5.48E-05  CoarseM AitM*CoarseM 2.06E-08 

AccM NuclM*AitM 2.29E-07  CoarseM NuclM*CoarseM -1.8E-08 

AccM NuclM*AccM -2.1E-07  CoarseM NuclM*AitM 1.87E-09 

AccM CoarseM*AccM -9.4E-08  NuclM NuclM -0.0194 

AccM AitM*AccM 9.21E-08  NuclM CoarseM 0.00284 

AitM AitM -0.0124  NuclM CoarseM*NuclM -6.2E-08 

AitM NuclM 0.0123     
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