1	Supplementary Information for:
2	Chemical characterization and formation of secondary organosiloxane aerosol
3	(SOSiA) from OH oxidation of decamethylcyclopentasiloxane
4	Yanfang Chen ^{a,b} , Yoojin Park ^c , Hyun Gu Kang ^d , Jiwoo Jeong ^a , Hwajin Kim ^{a,b*}
5	
6	^a Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National
7	University, 08826 Seoul, South Korea
8	^b Institute of Health and Environment, Graduate School of Public Health, Seoul National University,
9	08826 Seoul, South Korea
10	^c Department of Environmental Science and Engineering, College of Engineering, Ewha Womans
11	University, 03760 Seoul, South Korea
12	^d Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
13	
14	For Environ. Sci.: Atmos
15	This file includes:
16	8 Pages
17	10 Figures
18	3 Tables
19	References
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	

30

Table S1. Summary of PAM-OFR experiments.

Experiment ID	AMS	Filter	RH (%)	T (°C)	[H ₂ O] (%)	[D ₅] _{init} (ppb)	[D ₅] _{final} (ppb)	OH _{exp} (molec. sec. cm ⁻³)	Aging Day
1	\checkmark		27.76	26.57	0.953			3.85 × 10 ¹¹	2.97
2		\checkmark	29.82	20.37	0.704	245.16	135.20	6.57×10^{10}	0.51
3		V	29.43	20.78	0.713	231.86	119.29	1.21×10^{11}	0.94
4		V	29.14	21.02	0.716	224.62	101.46	1.92×10^{11}	1.48
5		V	28.35	23.03	0.788	225.94	88.00	3.53×10^{11}	2.72
6		V	31.35	23.54	0.899	222.53	80.61	4.04×10^{11}	3.12
7		V	80.64	22.12	2.12	229.37	108.80	2.09×10^{11}	1.61
8		\checkmark	79.44	23.35	2.25	228.39	83.81	2.72×10^{11}	2.1
9		\checkmark	76.07	24.02	2.24	186.98	67.94	4.54×10^{11}	3.5
10		\checkmark	72.21	24.73	2.22	222.48	56.32	8.24×10^{11}	6.36
11		\checkmark	73.59	24.15	2.19	241.04	56.39	9.12×10^{11}	7.04

31 Additional notes for AMS measurement: we've performed a series of experiments with AMS 32 measurement, however, the AMS fragments could not provide the molecular composition or 33 the formation mechanisms of SOSiA. Thus, only the representative AMS mass spectra was 34 used in our study. The RH and temperature were averaged values monitored in the PAM 35 chamber with light on. $[D_5]_{init}$ and $[D_5]_{final}$ are the D₅ concentrations measured by PTR-MS 36 before and after the reaction.

- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44

Formula	Nominal Mass	Exact Mass
$C_2H_7Si^+$	59	59.0317
$C_3H_9Si^+$	73	73.0474
$C_3H_9O_2Si_2^+$	133	133.0141
$C_5H_{15}OSi_2^+$	147	147.0661
$C_5H_{15}O_2Si_2^+$	163	163.0611
$C_4H_{11}O_3Si_3^+$	191	191.0016
$C_3H_9O_4Si_3{}^+$	193	192.9809
$C_5H_{15}O_3Si_3{}^+$	207	207.0329
$C_4H_{13}O_4Si_3^+$	209	209.0122
$C_7 H_{21} O_2 S i_3^+$	221	221.0849
$C_7H_{21}O_3Si_3^+$	237	237.0798
$C_{6}H_{19}O_{4}Si_{3}^{+}$	239	239.0591
$C_4H_{11}O_5Si_4^+$	251	250.9684
$C_6H_{17}O_4Si_4^+$	265	265.0204
$C_5H_{15}O_5Si_4^+$	267	266.9997
$C_{7}H_{21}O_{4}Si_{4}^{+}$	281	281.0517
$C_9H_{27}O_3Si_4^+$	295	295.1037
$C_6H_{17}O_6Si_5^+$	325	324.9871
$C_5H_{15}O_7Si_5^+$	327	326.9664
$C_4H_{13}O_8Si_5^+$	329	328.9457
$C_7H_{21}O_6Si_5^+$	341	341.0184
$C_{6}H_{19}O_{7}Si_{5}^{+}$	343	342.9977
$C_9H_{27}O_5Si_5^+$	355	355.0705
$C_8H_{25}O_6Si_5^+$	357	357.0498
$C_{11}H_{33}O_4Si_5^+$	369	369.1225
$C_6H_{17}O_8Si_6^+$	385	384.9539
$C_7H_{21}O_8Si_6^+$	401	400.9852
$C_9H_{27}O_7Si_6^+$	415	415.0372
$C_{11}H_{33}O_6Si_6^+$	429	429.0893
$C_7H_{21}O_{10}Si_7^+$	461	460.9520
$C_9H_{27}O_9Si_7^+$	475	475.0040

Table S2. D₅-SOSiA fragments measured by AMS.

No.	Formula	Monoisotopic	Ion	Note	
	CH OG.	mass	mode	DT OU	
1	$C_3H_{10}O_3S_{12}$	150.0169	[M-H] ⁻	DT-OH	
2	$C_5H_{16}O_4Si_3$	224.0356	[M-H] ⁻	D ₂ T-OH	
3	$C_4H_{14}O_5Si_3$	226.0149	[M-H] ⁻	DT ₂ -(OH) ₂	
4	$\mathrm{C_5H_{16}O_6Si_4}$	284.0024	[M-H] ⁻		
5	$\mathrm{C_4H_{14}O_7Si_4}$	285.9817	[M-H] ⁻		
6	$\mathrm{C_7H_{22}O_5Si_4}$	298.0544	[M-H] ⁻	D ₃ T-OH	
7	$\mathrm{C_6H_{20}O_6Si_4}$	300.0337	[M-H] ⁻	D ₂ T ₂ -(OH) ₂	
8	$C_5H_{16}O_8Si_5$	343.9692	[M-H] ⁻		
9	$\mathrm{C_7H_{22}O_7Si_5}$	358.0212	[M-H] ⁻	D ₃ T-OH-SiO ₂	
10	$C_6H_{20}O_8Si_5$	360.0005	[M-H] ⁻	D ₂ T ₂ -(OH) ₂ -SiO ₂	
11	$C_7H_{22}O_8Si_5$	374.0161	[M-H] ⁻	D ₂ T ₂ -OH-CH ₂ OH-SiO ₂	
12	$C_8H_{26}O_7Si_5$	374.0525	[M+Na] ⁺	D ₃ T ₂ -(OH) ₂	
13	$C_7H_{24}O_8Si_5$	376.0318	[M+Na] ⁺	D ₂ T ₃ -(OH) ₃	
14	$C_6H_{22}O_9Si_5$	378.0110	[M-H] ⁻	DT ₄ -(OH) ₄	
15	$C_8H_{26}O_8Si_5$	390.0474	[M+Na] ⁺	D ₂ T ₃ -(OH) ₂ -CH ₂ OH	
16	$C_7H_{24}O_9Si_5$	392.0267	[M+Na] ⁺	DT ₄ -(OH) ₃ -CH ₂ OH	
17	$C_9H_{28}O_9Si_5$	420.0580	[M+Na] ⁺	DT ₄ -OH-(CH ₂ OH) ₃	
18	$C_9H_{28}O_8Si_6$	432.0400	[M-H] ⁻		
19	$C_8H_{26}O_9Si_6$	434.0192	[M-H] ⁻		
20	$C_7H_{22}O_{11}Si_7$	477.9547	[M-H] ⁻		
21	$C_9H_{28}O_{10}Si_7$	492.0067	[M-H] ⁻		
22	$C_8H_{26}O_{11}Si_7$	493.9860	[M-H] ⁻		
23	C10H32O10Si7	508.0380	[M-H] ⁻		
24	$C_9H_{28}O_{12}Si_8$	551.9735	[M-H] ⁻		
25	$C_{11}H_{34}O_{11}Si_8$	566.0255	[M-H] ⁻		
26	C10H32O12Si8	568.0048	[M-H] ⁻		
27	$C_9H_{28}O_{14}Si_9$	611.9402	[M-H] ⁻		
28	C ₁₁ H ₃₄ O ₁₃ Si ₉	625.9923	[M-H] ⁻		
29	C ₁₂ H ₃₈ O ₁₃ Si ₉	642.0236	[M-H] ⁻		
30	C ₁₁ H ₃₄ O ₁₅ Si ₁₀	685.9590	[M-H] ⁻		
31	C ₁₃ H ₄₀ O ₁₄ Si ₁₀	700.0111	[M-H] ⁻		
32	C ₉ H ₃₈ O ₁₉ Si ₉	701.9931	[M-H] ⁻		
33	C ₁₄ H ₄₄ O ₁₄ Si ₁₀	716.0424	[M-H] ⁻		
34	C ₁₃ H ₄₂ O ₁₅ Si ₁₀	718.0216	[M-H] ⁻		
35	C ₁₃ H ₄₄ O ₁₆ Si ₁₀	736.0322	[M-H] ⁻		

53 **Table S3.** Identified molecular composition of D_5 -SOSiA detected by ESI-MS ("D" refers to 54 the units of $(CH_3)_2$ SiO and "T" refers to CH_3 SiO.).

56 **Figure S1.** Comparison between modeled and measurement results for OH_{exp} (a and c) and O_3 57 mixing ratios (b and d) across different offline OH_{exp} calibration experiments. The modeled 58 results were calculated from the KinSim chemical kinetic solver (4.6.1)¹ with the OFR185 59 mechanism from Rowe et al.²

62 **Figure S2.** (a) Time evolution and (b) scatterplot of SOSiA measured by AMS and SMPS 63 during experiment 1. (c) Time series of D_5 measured by PTR-MS and SMPS volume 64 concentration during a representative filter collection experiment. The grey area indicates 65 PAM-OFR light off period and light yellow is the light on period. Unfortunately, the PTR-MS 66 was not available during the experiment 1. The fluctuation of the time series at the beginning 67 is probably due to the unstable injection of D_5 .

68

69 Figure S3. AMS high-resolution mass spectra of Si-containing fragments at (a) m/z 73, (b) m/z

71

72

74 height of vertical grey lines corresponds to the expected isotopic ratios.

75

Figure S5. ESI-MS (-) mass spectrum of blank filter.

77

79

81 Figure S6. ESI-MS (-) mass spectrum of D₅-SOSiA at different OH exposure. The peak
82 intensities are normalized by setting the abundance of the largest peak in each spectrum to 100.
83

85 Figure S7. Possible structures of identified small silanols (DT-OH, D₂T-OH and D₃T-OH)

- and siloxandiols $(DT_2-(OH)_2 and D_2T_2-(OH)_2)$.

Figure S8. Possible structures of ring opening products $(D_3T-OH-SiO_2, D_2T_2-(OH)_2-SiO_2 and D_2T_2-OH-CH_2OH-SiO_2).$

92

93 Figure S9. Possible structures of identified monomers (D₃T₂-(OH)₂, D₂T₃-(OH)₃, DT₄-(OH)₄,

94
$$D_2T_3$$
-(OH)₂-CH₂OH, DT_4 -(OH)₃-CH₂OH and DT_4 -OH-(CH₂OH)₃).

95

96

97 Figure S10. Plots of C/Si versus O/Si for ring-opening SOSiA products between m/z 200-400.

98

99 References

100	1.	Z. Peng and J. L. Jimenez, KinSim: A Research-Grade, User-Friendly, Visual Kinetics
101		Simulator for Chemical-Kinetics and Environmental-Chemistry Teaching, Journal of
102		Chemical Education, 2019, 96, 806-811.
103	2.	J. P. Rowe, A. T. Lambe and W. H. Brune, Technical Note: Effect of varying the
104		$\lambda = 185$ and 254 nm photon flux ratio on radical generation in oxidation flow
105		reactors, Atmos. Chem. Phys., 2020, 20, 13417-13424.
106		